Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35235 by abdo.msup.com last updated on 17/May/18

let f(x)= e^(−2x)  arctanx  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie

letf(x)=e2xarctanx1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie

Commented by abdo mathsup 649 cc last updated on 18/May/18

 leibniz formula give f^()n)) (x)= Σ_(k=0) ^n  C_n ^k  (arctanx)^((k))  (e^(−2x) )^((n−k))   we have (arctanx)^((1)) = (1/(1+x^2 )) ⇒  (arctanx)^((k)) = ((1/(1+x^2 )))^((k−1)) =((1/((x−i)(x+i))))^((k−1))   =(1/(2i)){ (1/(x−i)) −(1/(x+i))}^((k−1))   = (1/(2i)){  (((−1)^(k−1)  (k−1)!)/((x−i)^k ))  −(((−1)^(k−1) (k−1)!)/((x+i)^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)) {(((x+i)^k  −(x−i)^k )/((x^2 +1)^k ))}  let find (e^(−2x) )^((p))   we have  (e^(−2x) )^((1)) =−2 e^(−2x)    ,  (e^(−2x) )^((2)) =(−2)^2   e^(−2x)   ....(e^(−2x) )^((p))   = (−2)^p  e^(−2p) ⇒  f^((n)) (x) =arctanx (−2)^n  e^(−2x)   +Σ_(k=1) ^n   C_n ^k     (((−1)^(k−1) (k−1)!)/(2i)){ (((x+i)^k  −(x−i)^k )/((x^2 +1)^k ))}(−2)^(n−k)  e^(−2x)   2) f^((n)) (0)=   Σ_(k=1) ^n    C_n ^k    (((−1)^(k−1) (k−1)!)/(2i)){((i^k  −(−i)^k )/1)}(−2)^(n−k)   but i^k  −(−i)^k  =e^(i((kπ)/2))  −e^(−i((kπ)/2))  =2i sin(((kπ)/2)) ⇒  f^((n)) (0)=Σ_(k=1) ^n C_n ^k  (k−1)!(−1)^(k−1) (−2)^(n−k)  sin(((kπ)/2))

leibnizformulagivef)n)(x)=k=0nCnk(arctanx)(k)(e2x)(nk)wehave(arctanx)(1)=11+x2(arctanx)(k)=(11+x2)(k1)=(1(xi)(x+i))(k1)=12i{1xi1x+i}(k1)=12i{(1)k1(k1)!(xi)k(1)k1(k1)!(x+i)k}=(1)k1(k1)!2i{(x+i)k(xi)k(x2+1)k}letfind(e2x)(p)wehave(e2x)(1)=2e2x,(e2x)(2)=(2)2e2x....(e2x)(p)=(2)pe2pf(n)(x)=arctanx(2)ne2x+k=1nCnk(1)k1(k1)!2i{(x+i)k(xi)k(x2+1)k}(2)nke2x2)f(n)(0)=k=1nCnk(1)k1(k1)!2i{ik(i)k1}(2)nkbutik(i)k=eikπ2eikπ2=2isin(kπ2)f(n)(0)=k=1nCnk(k1)!(1)k1(2)nksin(kπ2)

Commented by abdo mathsup 649 cc last updated on 18/May/18

3) we have C_n ^k   (k−1)! =((n!)/(k!(n−k)!))(k−1)!  = ((n!)/(k(n−k)!))  the developpent of f is  f(x) = Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n    =Σ_(n=0) ^∞    { Σ_(k=1) ^n   (1/(k(n−k)!))(−1)^(k−1) (−2)^(n−k)  sin(((kπ)/2))}x^n

3)wehaveCnk(k1)!=n!k!(nk)!(k1)!=n!k(nk)!thedeveloppentoffisf(x)=n=0f(n)(0)n!xn=n=0{k=1n1k(nk)!(1)k1(2)nksin(kπ2)}xn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com