Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 35279 by ajfour last updated on 17/May/18

Commented by ajfour last updated on 17/May/18

Given two circles of radii r and R.  The circles touch each other  internally. Triangle ABC has  its vertex A at the point where  the circles touch. Vertex B lies  on the circumference of smaller  circle of radius r while vertex C  lies on circumference of circle  of radius R.  Find maximum area of △ABC  in terms of r, and R.

$${Given}\:{two}\:{circles}\:{of}\:{radii}\:\boldsymbol{{r}}\:{and}\:\boldsymbol{{R}}. \\ $$$${The}\:{circles}\:{touch}\:{each}\:{other} \\ $$$${internally}.\:{Triangle}\:{ABC}\:{has} \\ $$$${its}\:{vertex}\:\boldsymbol{{A}}\:{at}\:{the}\:{point}\:{where} \\ $$$${the}\:{circles}\:{touch}.\:{Vertex}\:\boldsymbol{{B}}\:{lies} \\ $$$${on}\:{the}\:{circumference}\:{of}\:{smaller} \\ $$$${circle}\:{of}\:{radius}\:\boldsymbol{{r}}\:{while}\:{vertex}\:\boldsymbol{{C}} \\ $$$${lies}\:{on}\:{circumference}\:{of}\:{circle} \\ $$$${of}\:{radius}\:\boldsymbol{{R}}. \\ $$$${Find}\:{maximum}\:{area}\:{of}\:\bigtriangleup{ABC} \\ $$$${in}\:{terms}\:{of}\:\boldsymbol{{r}},\:{and}\:\boldsymbol{{R}}. \\ $$

Commented by ajfour last updated on 17/May/18

Commented by ajfour last updated on 17/May/18

A(θ,φ)=(1/2)bcsin (θ+φ)  b=2Rsin φ  ,  c=2rsin θ  A(θ,φ)=2rRsin θsin φsin (θ+φ)  (∂A/∂θ)=2rRsin φ[cos θsin (θ+φ)              +sin θcos (θ+φ)]=0  ⇒ sin φ=0,π  or         sin (2θ+φ)=0  similarly  (∂A/∂φ)=0 ⇒   sin θ=0,π  or   sin (2φ+θ)=0  for our case  ⇒  2θ+φ=π  and  2φ+θ=π  ⇒  θ+φ=((2π)/3)   So  θ=φ=(π/3)  A=(2rR)(((3(√3))/8)) =((3(√3)rR)/4) .

$${A}\left(\theta,\phi\right)=\frac{\mathrm{1}}{\mathrm{2}}{bc}\mathrm{sin}\:\left(\theta+\phi\right) \\ $$$${b}=\mathrm{2}{R}\mathrm{sin}\:\phi\:\:,\:\:{c}=\mathrm{2}{r}\mathrm{sin}\:\theta \\ $$$${A}\left(\theta,\phi\right)=\mathrm{2}{rR}\mathrm{sin}\:\theta\mathrm{sin}\:\phi\mathrm{sin}\:\left(\theta+\phi\right) \\ $$$$\frac{\partial{A}}{\partial\theta}=\mathrm{2}{rR}\mathrm{sin}\:\phi\left[\mathrm{cos}\:\theta\mathrm{sin}\:\left(\theta+\phi\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:\theta\mathrm{cos}\:\left(\theta+\phi\right)\right]=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{sin}\:\phi=\mathrm{0},\pi\:\:{or} \\ $$$$\:\:\:\:\:\:\:\mathrm{sin}\:\left(\mathrm{2}\theta+\phi\right)=\mathrm{0} \\ $$$${similarly}\:\:\frac{\partial{A}}{\partial\phi}=\mathrm{0}\:\Rightarrow\:\:\:\mathrm{sin}\:\theta=\mathrm{0},\pi \\ $$$${or}\:\:\:\mathrm{sin}\:\left(\mathrm{2}\phi+\theta\right)=\mathrm{0} \\ $$$${for}\:{our}\:{case} \\ $$$$\Rightarrow\:\:\mathrm{2}\theta+\phi=\pi\:\:{and}\:\:\mathrm{2}\phi+\theta=\pi \\ $$$$\Rightarrow\:\:\theta+\phi=\frac{\mathrm{2}\pi}{\mathrm{3}}\: \\ $$$${So}\:\:\theta=\phi=\frac{\pi}{\mathrm{3}} \\ $$$${A}=\left(\mathrm{2}{rR}\right)\left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)\:=\frac{\mathrm{3}\sqrt{\mathrm{3}}\boldsymbol{{rR}}}{\mathrm{4}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com