Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35297 by 123 45 polytechnicien last updated on 17/May/18

sokve x^3 +6y^3 =4z^3  x y z integers

$${sokve}\:{x}^{\mathrm{3}} +\mathrm{6}{y}^{\mathrm{3}} =\mathrm{4}{z}^{\mathrm{3}} \:{x}\:{y}\:{z}\:{integers} \\ $$

Commented by Rasheed.Sindhi last updated on 18/May/18

4z^3 →even⇒x^3 +6y^3 →even  x^3 +6y^3 →even ∧ 6y^3 →even                          ⇒x^3 →even⇒x→even  Let x=2m  x^3 +6y^3 =4z^3 ⇒8m^3 +6y^3 =4z^3                     ⇒4m^3 +3y^3 =2z^3   4m^3 →even ∧ 2z^3 →even⇒3y^3 →even                        ⇒y^3 →even⇒y→even   x^3 +6y^3 =4z^3 ⇒(even)^3 +6(even)^3 =4z^3   8∣(even)^3 ⇒8∣ [(even)^3 +6(even)^3 ]                ⇒8∣4z^3 ⇒z^3 →even⇒z→even  So x,y,z→even  Let x=2m,y=2n & z=2l  x^3 +6y^3 =4z^3 ⇒(2m)^3 +6(2n)^3 =4(2l)^3            8m^3 +6(8n^3 )=4(8l^3 )              m^3 +6n^3 =4l^3         This is same as x^3 +6y^3 =4z^3       (hahaha we reeched at the begning)  Anyway we should search x,y,z in  in even numbers and this is a clue!

$$\mathrm{4z}^{\mathrm{3}} \rightarrow\mathrm{even}\Rightarrow\mathrm{x}^{\mathrm{3}} +\mathrm{6y}^{\mathrm{3}} \rightarrow\mathrm{even} \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{6y}^{\mathrm{3}} \rightarrow\mathrm{even}\:\wedge\:\mathrm{6y}^{\mathrm{3}} \rightarrow\mathrm{even} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{x}^{\mathrm{3}} \rightarrow\mathrm{even}\Rightarrow\mathrm{x}\rightarrow\mathrm{even} \\ $$$$\mathrm{Let}\:\mathrm{x}=\mathrm{2m} \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{y}^{\mathrm{3}} =\mathrm{4}{z}^{\mathrm{3}} \Rightarrow\mathrm{8m}^{\mathrm{3}} +\mathrm{6y}^{\mathrm{3}} =\mathrm{4z}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{4m}^{\mathrm{3}} +\mathrm{3y}^{\mathrm{3}} =\mathrm{2z}^{\mathrm{3}} \\ $$$$\mathrm{4m}^{\mathrm{3}} \rightarrow\mathrm{even}\:\wedge\:\mathrm{2z}^{\mathrm{3}} \rightarrow\mathrm{even}\Rightarrow\mathrm{3y}^{\mathrm{3}} \rightarrow\mathrm{even} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{y}^{\mathrm{3}} \rightarrow\mathrm{even}\Rightarrow\mathrm{y}\rightarrow\mathrm{even} \\ $$$$\:{x}^{\mathrm{3}} +\mathrm{6}{y}^{\mathrm{3}} =\mathrm{4z}^{\mathrm{3}} \Rightarrow\left(\mathrm{even}\right)^{\mathrm{3}} +\mathrm{6}\left(\mathrm{even}\right)^{\mathrm{3}} =\mathrm{4z}^{\mathrm{3}} \\ $$$$\mathrm{8}\mid\left(\mathrm{even}\right)^{\mathrm{3}} \Rightarrow\mathrm{8}\mid\:\left[\left(\mathrm{even}\right)^{\mathrm{3}} +\mathrm{6}\left(\mathrm{even}\right)^{\mathrm{3}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{8}\mid\mathrm{4z}^{\mathrm{3}} \Rightarrow\mathrm{z}^{\mathrm{3}} \rightarrow\mathrm{even}\Rightarrow\mathrm{z}\rightarrow\mathrm{even} \\ $$$$\mathrm{So}\:\mathrm{x},\mathrm{y},\mathrm{z}\rightarrow\mathrm{even} \\ $$$$\mathrm{Let}\:\mathrm{x}=\mathrm{2m},\mathrm{y}=\mathrm{2n}\:\&\:\mathrm{z}=\mathrm{2}{l} \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{y}^{\mathrm{3}} =\mathrm{4}{z}^{\mathrm{3}} \Rightarrow\left(\mathrm{2m}\right)^{\mathrm{3}} +\mathrm{6}\left(\mathrm{2n}\right)^{\mathrm{3}} =\mathrm{4}\left(\mathrm{2}{l}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{8m}^{\mathrm{3}} +\mathrm{6}\left(\mathrm{8n}^{\mathrm{3}} \right)=\mathrm{4}\left(\mathrm{8}{l}^{\mathrm{3}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{m}^{\mathrm{3}} +\mathrm{6n}^{\mathrm{3}} =\mathrm{4}{l}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\mathrm{This}\:\mathrm{is}\:\mathrm{same}\:\mathrm{as}\:{x}^{\mathrm{3}} +\mathrm{6}{y}^{\mathrm{3}} =\mathrm{4}{z}^{\mathrm{3}} \\ $$$$\:\:\:\:\left(\boldsymbol{\mathrm{hahaha}}\:\mathrm{we}\:\mathrm{reeched}\:\mathrm{at}\:\mathrm{the}\:\mathrm{begning}\right) \\ $$$$\mathrm{Anyway}\:\mathrm{we}\:\mathrm{should}\:\mathrm{search}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{in} \\ $$$$\mathrm{in}\:\mathrm{even}\:\mathrm{numbers}\:\mathrm{and}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{clue}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com