Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 35319 by Tinkutara last updated on 17/May/18

Answered by MJS last updated on 17/May/18

it′s just multiplicating and factorising  det determinant ((a,b,c),(d,e,f),(g,h,i))=aei+bfg+cdh−afh−bdi−ceg

$$\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{multiplicating}\:\mathrm{and}\:\mathrm{factorising} \\ $$$$\mathrm{det}\begin{vmatrix}{{a}}&{{b}}&{{c}}\\{{d}}&{{e}}&{{f}}\\{{g}}&{{h}}&{{i}}\end{vmatrix}={aei}+{bfg}+{cdh}−{afh}−{bdi}−{ceg} \\ $$

Commented by Tinkutara last updated on 18/May/18

No it is to be done by properties of determinants. Please can you try that way?

Answered by ajfour last updated on 18/May/18

 determinant ((((b+c)^2 ),a^2 ,a^2 ),(b^2 ,((c+a)^2 ),b^2 ),(c^2 ,c^2 ,((a+b)^2 )))  C_1 →C_1 −C_3 ;  C_2 →C_2 −C_3    = determinant ((((b+c+a)(b+c−a)),0,a^2 ),(0,((c+a+b)(c+a−b)),b^2 ),(((c+a+b)(c−a−b)),((c+a+b)(c−a−b)),((a+b)^2 )))    =(a+b+c)^2  determinant (((b+c−a),0,a^2 ),(0,(c+a−b),b^2 ),((c−a−b),(c−a−b),((a+b)^2 )))  R_3 →R_3 −(R_1 +R_2 )  =(a+b+c)^2  determinant (((b+c−a),0,a^2 ),(0,(c+a−b),b^2 ),((−2b),(−2a),(2ab)))  =(a+b+c)^2 {(b+c−a)[2abc+2a^2 b]                      +a^2 [2bc+2ab−2b^2 ]}  =(a+b+c)^2 {2b[abc+ac^2 −a^2 c             a^2 b+a^2 c−a^3 +a^2 c+a^3 −a^2 b]}  =(a+b+c)^2 {2b[abc+ac^2 +a^2 c}  =2abc(a+b+c)^2 (b+c+a)  =2abc(a+b+c)^3  .

$$\begin{vmatrix}{\left({b}+{c}\right)^{\mathrm{2}} }&{{a}^{\mathrm{2}} }&{{a}^{\mathrm{2}} }\\{{b}^{\mathrm{2}} }&{\left({c}+{a}\right)^{\mathrm{2}} }&{{b}^{\mathrm{2}} }\\{{c}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }&{\left({a}+{b}\right)^{\mathrm{2}} }\end{vmatrix} \\ $$$${C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{3}} ;\:\:{C}_{\mathrm{2}} \rightarrow{C}_{\mathrm{2}} −{C}_{\mathrm{3}} \: \\ $$$$=\begin{vmatrix}{\left({b}+{c}+{a}\right)\left({b}+{c}−{a}\right)}&{\mathrm{0}}&{{a}^{\mathrm{2}} }\\{\mathrm{0}}&{\left({c}+{a}+{b}\right)\left({c}+{a}−{b}\right)}&{{b}^{\mathrm{2}} }\\{\left({c}+{a}+{b}\right)\left({c}−{a}−{b}\right)}&{\left({c}+{a}+{b}\right)\left({c}−{a}−{b}\right)}&{\left({a}+{b}\right)^{\mathrm{2}} }\end{vmatrix} \\ $$$$ \\ $$$$=\left({a}+{b}+{c}\right)^{\mathrm{2}} \begin{vmatrix}{{b}+{c}−{a}}&{\mathrm{0}}&{{a}^{\mathrm{2}} }\\{\mathrm{0}}&{{c}+{a}−{b}}&{{b}^{\mathrm{2}} }\\{{c}−{a}−{b}}&{{c}−{a}−{b}}&{\left({a}+{b}\right)^{\mathrm{2}} }\end{vmatrix} \\ $$$${R}_{\mathrm{3}} \rightarrow{R}_{\mathrm{3}} −\left({R}_{\mathrm{1}} +{R}_{\mathrm{2}} \right) \\ $$$$=\left({a}+{b}+{c}\right)^{\mathrm{2}} \begin{vmatrix}{{b}+{c}−{a}}&{\mathrm{0}}&{{a}^{\mathrm{2}} }\\{\mathrm{0}}&{{c}+{a}−{b}}&{{b}^{\mathrm{2}} }\\{−\mathrm{2}{b}}&{−\mathrm{2}{a}}&{\mathrm{2}{ab}}\end{vmatrix} \\ $$$$=\left({a}+{b}+{c}\right)^{\mathrm{2}} \left\{\left({b}+{c}−{a}\right)\left[\mathrm{2}{abc}+\mathrm{2}{a}^{\mathrm{2}} {b}\right]\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{a}^{\mathrm{2}} \left[\mathrm{2}{bc}+\mathrm{2}{ab}−\mathrm{2}{b}^{\mathrm{2}} \right]\right\} \\ $$$$=\left({a}+{b}+{c}\right)^{\mathrm{2}} \left\{\mathrm{2}{b}\left[{abc}+{ac}^{\mathrm{2}} −{a}^{\mathrm{2}} {c}\right.\right. \\ $$$$\left.\:\left.\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} {b}+{a}^{\mathrm{2}} {c}−{a}^{\mathrm{3}} +{a}^{\mathrm{2}} {c}+{a}^{\mathrm{3}} −{a}^{\mathrm{2}} {b}\right]\right\} \\ $$$$=\left({a}+{b}+{c}\right)^{\mathrm{2}} \left\{\mathrm{2}{b}\left[{abc}+{ac}^{\mathrm{2}} +{a}^{\mathrm{2}} {c}\right\}\right. \\ $$$$=\mathrm{2}{abc}\left({a}+{b}+{c}\right)^{\mathrm{2}} \left({b}+{c}+{a}\right) \\ $$$$=\mathrm{2}{abc}\left({a}+{b}+{c}\right)^{\mathrm{3}} \:. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/May/18

pls let me know how to put determinant sign  in this app

$${pls}\:{let}\:{me}\:{know}\:{how}\:{to}\:{put}\:{determinant}\:{sign} \\ $$$${in}\:{this}\:{app} \\ $$

Commented by ajfour last updated on 18/May/18

i couldn′t find a way like that..

$${i}\:{couldn}'{t}\:{find}\:{a}\:{way}\:{like}\:{that}.. \\ $$

Commented by Tinkutara last updated on 18/May/18

Should not we simplify the determinant  till atleast 2 zeroes in any row or  column?

$${Should}\:{not}\:{we}\:{simplify}\:{the}\:{determinant} \\ $$$${till}\:{atleast}\:\mathrm{2}\:{zeroes}\:{in}\:{any}\:{row}\:{or} \\ $$$${column}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com