Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 35347 by chakraborty ankit last updated on 18/May/18

Answered by Rasheed.Sindhi last updated on 18/May/18

Q#1(i)  Let P_1 ,P_2 ,P_3 ,P_4 ,P_5  & P_6  are 6 vertices.  ^• P_1  can be joined to 5 other points.Hence     producing 5 straight lines.  ^• P_2  is already connected to P_1 .It can be  joined 4 other points to produce 4 straight  lines.  ^• P_3  is to join 3 new points producing  3 straight lines.  ^• P_(4 ) produces 2 new straight lines  ^(• ) P_5 : 1 straight new line.  ^• P_6 : 0 new straight lines.  Note: The center cannot produce extra  line as it′s part of some existing lines  Total straight lines:5+4+3+2+1+0                            =15   Q#1(ii)  There are total 7 points.  Number of triplets= ((7),(3) )=((7.6.5)/(1.2.3))=35  3 triplets are not traingles.They are  straight lines.  Hence number of triangles=35−3=32

$$\mathrm{Q}#\mathrm{1}\left(\mathrm{i}\right) \\ $$$$\mathrm{Let}\:\mathrm{P}_{\mathrm{1}} ,\mathrm{P}_{\mathrm{2}} ,\mathrm{P}_{\mathrm{3}} ,\mathrm{P}_{\mathrm{4}} ,\mathrm{P}_{\mathrm{5}} \:\&\:\mathrm{P}_{\mathrm{6}} \:\mathrm{are}\:\mathrm{6}\:\mathrm{vertices}. \\ $$$$\:^{\bullet} \mathrm{P}_{\mathrm{1}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{joined}\:\mathrm{to}\:\mathrm{5}\:\mathrm{other}\:\mathrm{points}.\mathrm{Hence} \\ $$$$\:\:\:\mathrm{producing}\:\mathrm{5}\:\mathrm{straight}\:\mathrm{lines}. \\ $$$$\:^{\bullet} \mathrm{P}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{already}\:\mathrm{connected}\:\mathrm{to}\:\mathrm{P}_{\mathrm{1}} .\mathrm{It}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{joined}\:\mathrm{4}\:\mathrm{other}\:\mathrm{points}\:\mathrm{to}\:\mathrm{produce}\:\mathrm{4}\:\mathrm{straight} \\ $$$$\mathrm{lines}. \\ $$$$\:^{\bullet} \mathrm{P}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{to}\:\mathrm{join}\:\mathrm{3}\:\mathrm{new}\:\mathrm{points}\:\mathrm{producing} \\ $$$$\mathrm{3}\:\mathrm{straight}\:\mathrm{lines}. \\ $$$$\:^{\bullet} \mathrm{P}_{\mathrm{4}\:} \mathrm{produces}\:\mathrm{2}\:\mathrm{new}\:\mathrm{straight}\:\mathrm{lines} \\ $$$$\:^{\bullet\:} \mathrm{P}_{\mathrm{5}} :\:\mathrm{1}\:\mathrm{straight}\:\mathrm{new}\:\mathrm{line}. \\ $$$$\:^{\bullet} \mathrm{P}_{\mathrm{6}} :\:\mathrm{0}\:\mathrm{new}\:\mathrm{straight}\:\mathrm{lines}. \\ $$$$\mathcal{N}\mathrm{ote}:\:{The}\:{center}\:{cannot}\:{produce}\:{extra} \\ $$$${line}\:{as}\:{it}'{s}\:{part}\:{of}\:{some}\:{existing}\:{lines} \\ $$$$\mathrm{Total}\:\mathrm{straight}\:\mathrm{lines}:\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}+\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{15}\: \\ $$$$\mathrm{Q}#\mathrm{1}\left(\mathrm{ii}\right) \\ $$$$\mathrm{There}\:\mathrm{are}\:\mathrm{total}\:\mathrm{7}\:\mathrm{points}. \\ $$$$\mathrm{Number}\:\mathrm{of}\:\mathrm{triplets}=\begin{pmatrix}{\mathrm{7}}\\{\mathrm{3}}\end{pmatrix}=\frac{\mathrm{7}.\mathrm{6}.\mathrm{5}}{\mathrm{1}.\mathrm{2}.\mathrm{3}}=\mathrm{35} \\ $$$$\mathrm{3}\:\mathrm{triplets}\:\mathrm{are}\:\mathrm{not}\:\mathrm{traingles}.\mathrm{They}\:\mathrm{are} \\ $$$$\mathrm{straight}\:\mathrm{lines}. \\ $$$$\mathrm{Hence}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangles}=\mathrm{35}−\mathrm{3}=\mathrm{32} \\ $$

Commented by Rasheed.Sindhi last updated on 18/May/18

Q#1(i) also can be done in the following  way.  ^• There are 7 points,out of them only 6 vertices  are capable to produce all possible lines.Any pair  of vertices can produce a straight line  So number of straight lines                      =number of pairs of vertices  Number of pairs= ((6),(2) )=((6.5)/(1.2))=15  Or number of straight lines=15

$$\mathrm{Q}#\mathrm{1}\left(\mathrm{i}\right)\:\mathrm{also}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{in}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{way}. \\ $$$$\:^{\bullet} \mathrm{There}\:\mathrm{are}\:\mathrm{7}\:\mathrm{points},\mathrm{out}\:\mathrm{of}\:\mathrm{them}\:\mathrm{only}\:\mathrm{6}\:\mathrm{vertices} \\ $$$$\mathrm{are}\:\mathrm{capable}\:\mathrm{to}\:\mathrm{produce}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{lines}.\mathrm{Any}\:\mathrm{pair} \\ $$$$\mathrm{of}\:\mathrm{vertices}\:\mathrm{can}\:\mathrm{produce}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{So}\:\mathrm{number}\:\mathrm{of}\:\mathrm{straight}\:\mathrm{lines} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{number}\:\mathrm{of}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{vertices} \\ $$$$\mathrm{Number}\:\mathrm{of}\:\mathrm{pairs}=\begin{pmatrix}{\mathrm{6}}\\{\mathrm{2}}\end{pmatrix}=\frac{\mathrm{6}.\mathrm{5}}{\mathrm{1}.\mathrm{2}}=\mathrm{15} \\ $$$$\mathrm{Or}\:\mathrm{number}\:\mathrm{of}\:\mathrm{straight}\:\mathrm{lines}=\mathrm{15} \\ $$

Answered by Rasheed.Sindhi last updated on 18/May/18

Q#2   ★Join of two non-consecutive vertices  is defined as diagonal of polygon.  ★Number of non-consecutive vertices  to a particular vertex in an n-gon is   n−3 (3 points are consecutive)     So in octagon to a particular vertex       8−2=6 non-consecutive vertices.  Let the vertices are P_1 ,P_2 ,...,P_8   ⋇Begin with P_1 :P_1 can be joined P_3 ,...,P_7   in order to produce 5 diagonals.  (Of course P_1 P_2  & P_1 P_8  are not diagonals  because P_2  & P_8  are consecutive to P_1 )  ⋇Similarly P_2  can be joined all other  points except P_(1 ) & P_3  to produce 5 new  diagonals.  ⋇P_3 ,however already conected to P_1   so the diagonal  P_3 P_1  is already counted.  Hence it produces 4 new diagonals.  ⋇In this way     P_4  produces 3 new diagonals.     P_5  produces 2 new diagonals.     P_6  produces 1 new diagonals.      P_7  & P_8  produce no new diagonal.   Total of diagonals=5+5+4+3+2+1                          =20

$$\mathrm{Q}#\mathrm{2}\: \\ $$$$\bigstar\mathrm{Join}\:\mathrm{of}\:\mathrm{two}\:\mathrm{non}-\mathrm{consecutive}\:\mathrm{vertices} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\boldsymbol{\mathrm{diagonal}}\:\mathrm{of}\:\mathrm{polygon}. \\ $$$$\bigstar\mathrm{Number}\:\mathrm{of}\:\mathrm{non}-\mathrm{consecutive}\:\mathrm{vertices} \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{vertex}\:\mathrm{in}\:\mathrm{an}\:\mathrm{n}-\mathrm{gon}\:\mathrm{is}\: \\ $$$$\mathrm{n}−\mathrm{3}\:\left(\mathrm{3}\:\mathrm{points}\:\mathrm{are}\:\mathrm{consecutive}\right) \\ $$$$\:\:\:\mathrm{So}\:\mathrm{in}\:\mathrm{octagon}\:\mathrm{to}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{vertex} \\ $$$$\:\:\:\:\:\mathrm{8}−\mathrm{2}=\mathrm{6}\:\mathrm{non}-\mathrm{consecutive}\:\mathrm{vertices}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{are}\:\mathrm{P}_{\mathrm{1}} ,\mathrm{P}_{\mathrm{2}} ,...,\mathrm{P}_{\mathrm{8}} \\ $$$$\divideontimes\mathrm{Begin}\:\mathrm{with}\:\mathrm{P}_{\mathrm{1}} :\mathrm{P}_{\mathrm{1}} \mathrm{can}\:\mathrm{be}\:\mathrm{joined}\:\mathrm{P}_{\mathrm{3}} ,...,\mathrm{P}_{\mathrm{7}} \\ $$$$\mathrm{in}\:\mathrm{order}\:\mathrm{to}\:\mathrm{produce}\:\mathrm{5}\:\mathrm{diagonals}. \\ $$$$\left(\mathrm{Of}\:\mathrm{course}\:\mathrm{P}_{\mathrm{1}} \mathrm{P}_{\mathrm{2}} \:\&\:\mathrm{P}_{\mathrm{1}} \mathrm{P}_{\mathrm{8}} \:\mathrm{are}\:\mathrm{not}\:\mathrm{diagonals}\right. \\ $$$$\left.\mathrm{because}\:\mathrm{P}_{\mathrm{2}} \:\&\:\mathrm{P}_{\mathrm{8}} \:\mathrm{are}\:\mathrm{consecutive}\:\mathrm{to}\:\mathrm{P}_{\mathrm{1}} \right) \\ $$$$\divideontimes\mathrm{Similarly}\:\mathrm{P}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{joined}\:\mathrm{all}\:\mathrm{other} \\ $$$$\mathrm{points}\:\mathrm{except}\:\mathrm{P}_{\mathrm{1}\:} \&\:\mathrm{P}_{\mathrm{3}} \:\mathrm{to}\:\mathrm{produce}\:\mathrm{5}\:\mathrm{new} \\ $$$$\mathrm{diagonals}. \\ $$$$\divideontimes\mathrm{P}_{\mathrm{3}} ,\mathrm{however}\:\mathrm{already}\:\mathrm{conected}\:\mathrm{to}\:\mathrm{P}_{\mathrm{1}} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{diagonal}\:\:\mathrm{P}_{\mathrm{3}} \mathrm{P}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{already}\:\mathrm{counted}. \\ $$$$\mathrm{Hence}\:\mathrm{it}\:\mathrm{produces}\:\mathrm{4}\:\mathrm{new}\:\mathrm{diagonals}. \\ $$$$\divideontimes\mathrm{In}\:\mathrm{this}\:\mathrm{way} \\ $$$$\:\:\:\mathrm{P}_{\mathrm{4}} \:\mathrm{produces}\:\mathrm{3}\:\mathrm{new}\:\mathrm{diagonals}. \\ $$$$\:\:\:\mathrm{P}_{\mathrm{5}} \:\mathrm{produces}\:\mathrm{2}\:\mathrm{new}\:\mathrm{diagonals}. \\ $$$$\:\:\:\mathrm{P}_{\mathrm{6}} \:\mathrm{produces}\:\mathrm{1}\:\mathrm{new}\:\mathrm{diagonals}. \\ $$$$\:\:\:\:\mathrm{P}_{\mathrm{7}} \:\&\:\mathrm{P}_{\mathrm{8}} \:\mathrm{produce}\:\mathrm{no}\:\mathrm{new}\:\mathrm{diagonal}. \\ $$$$\:\mathrm{Total}\:\mathrm{of}\:\mathrm{diagonals}=\mathrm{5}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{20} \\ $$

Answered by Rasheed.Sindhi last updated on 19/May/18

Q#3   ^•  3 collinear points produce 1 line.    Each of three points can be joined to     4+5=9 points     Each point produce 9 lines      All 3 points produce 9×3=27 lines.  ^•  4 collinear points produce 1 line.      Each of 4 points can be joined to      5 points to produce new lines     Each point produce 5 lines.      All 4 points produce 5×4=20 new lines.  ^•  5 collinear points produce 1 line.      All the lines produced by these       points have already been counted.       So produce 0 new line.    Number of all possible lines=       1+27+1+20+1=50

$$\mathrm{Q}#\mathrm{3}\: \\ $$$$\:^{\bullet} \:\mathrm{3}\:\mathrm{collinear}\:\mathrm{points}\:\mathrm{produce}\:\mathrm{1}\:\mathrm{line}. \\ $$$$\:\:\mathrm{Each}\:\mathrm{of}\:\mathrm{three}\:\mathrm{points}\:\mathrm{can}\:\mathrm{be}\:\mathrm{joined}\:\mathrm{to} \\ $$$$\:\:\:\mathrm{4}+\mathrm{5}=\mathrm{9}\:\mathrm{points} \\ $$$$\:\:\:\mathrm{Each}\:\mathrm{point}\:\mathrm{produce}\:\mathrm{9}\:\mathrm{lines} \\ $$$$\:\:\:\:\mathrm{All}\:\mathrm{3}\:\mathrm{points}\:\mathrm{produce}\:\mathrm{9}×\mathrm{3}=\mathrm{27}\:\mathrm{lines}. \\ $$$$\:^{\bullet} \:\mathrm{4}\:\mathrm{collinear}\:\mathrm{points}\:\mathrm{produce}\:\mathrm{1}\:\mathrm{line}. \\ $$$$\:\:\:\:\mathrm{Each}\:\mathrm{of}\:\mathrm{4}\:\mathrm{points}\:\mathrm{can}\:\mathrm{be}\:\mathrm{joined}\:\mathrm{to} \\ $$$$\:\:\:\:\mathrm{5}\:\mathrm{points}\:\mathrm{to}\:\mathrm{produce}\:\boldsymbol{\mathrm{new}}\:\mathrm{lines} \\ $$$$\:\:\:\mathrm{Each}\:\mathrm{point}\:\mathrm{produce}\:\mathrm{5}\:\mathrm{lines}. \\ $$$$\:\:\:\:\mathrm{All}\:\mathrm{4}\:\mathrm{points}\:\mathrm{produce}\:\mathrm{5}×\mathrm{4}=\mathrm{20}\:\boldsymbol{\mathrm{new}}\:\mathrm{lines}. \\ $$$$\:^{\bullet} \:\mathrm{5}\:\mathrm{collinear}\:\mathrm{points}\:\mathrm{produce}\:\mathrm{1}\:\mathrm{line}. \\ $$$$\:\:\:\:\mathrm{All}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{produced}\:\mathrm{by}\:\mathrm{these} \\ $$$$\:\:\:\:\:\mathrm{points}\:\mathrm{have}\:\mathrm{already}\:\mathrm{been}\:\mathrm{counted}. \\ $$$$\:\:\:\:\:\mathrm{So}\:\mathrm{produce}\:\mathrm{0}\:\boldsymbol{\mathrm{new}}\:\mathrm{line}. \\ $$$$\:\:\mathrm{Number}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{lines}=\: \\ $$$$\:\:\:\:\mathrm{1}+\mathrm{27}+\mathrm{1}+\mathrm{20}+\mathrm{1}=\mathrm{50} \\ $$$$\:\:\:\: \\ $$

Commented by chakraborty ankit last updated on 21/May/18

thank a lot sir

$${thank}\:{a}\:{lot}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com