Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35379 by lilesh7 last updated on 18/May/18

∫_0 ^(  1) t^2 (√(1+t^2 )) dt = ?

01t21+t2dt=?

Commented by prof Abdo imad last updated on 18/May/18

let put I = ∫_0 ^1  t^2  (√(1+t^2 )) dt.changement t=shx  give I = ∫_0 ^(ln(1+(√(2))))   sh^2 x chx.chxdx  =∫_0 ^(ln(1+(√2)))   (shx chx)^2 dx  =(1/4) ∫_0 ^(ln(1+(√2))) sh^2 (2x)dx =(1/4) ∫_0 ^(ln(1+(√2)))  ((ch(4x)−1)/2)dx  =(1/8) ∫_0 ^(ln(1+(√2))) ch(4x)dx −(1/8)ln(1+(√2))  = (1/(32))[ sh(4x)]_0 ^(ln(1+(√2)))   −(1/8)ln(1+(√2))  =(1/(32)) sh(4ln(1+(√(2)))) −(1/8)ln(1+(√2)) but we have  shx =((e^x   −e^(−x) )/2) ⇒sh(4ln(1+(√(2))))  =((e^(4ln(1+(√2)))  − e^(−4ln(1+(√2))) )/2)=(((1+(√2))^4   −(1/((1+(√2))^4 )))/2)⇒  I = (1/(64)){   (1+(√2))^4  −(1+(√2))^(−4) } −(1/8)ln(1+(√2))  let remember that  argsh(x)=ln(x+(√(x^2 +1)))  argchx=ln(x +(√(x^2 −1)))

letputI=01t21+t2dt.changementt=shxgiveI=0ln(1+2)sh2xchx.chxdx=0ln(1+2)(shxchx)2dx=140ln(1+2)sh2(2x)dx=140ln(1+2)ch(4x)12dx=180ln(1+2)ch(4x)dx18ln(1+2)=132[sh(4x)]0ln(1+2)18ln(1+2)=132sh(4ln(1+2))18ln(1+2)butwehaveshx=exex2sh(4ln(1+2))=e4ln(1+2)e4ln(1+2)2=(1+2)41(1+2)42I=164{(1+2)4(1+2)4}18ln(1+2)letrememberthatargsh(x)=ln(x+x2+1)argchx=ln(x+x21)

Commented by ajfour last updated on 18/May/18

I=((5(√2))/8)−((ln (1+(√2)))/8) .  is it same as your answer to this  question,Sir ?

I=528ln(1+2)8.isitsameasyouranswertothisquestion,Sir?

Commented by abdo mathsup 649 cc last updated on 18/May/18

perhaps after develpping the calculus...

perhapsafterdevelppingthecalculus...

Answered by MJS last updated on 18/May/18

∫t^2 (√(t^2 +1))dt=∫(t^2 +1−1)(√(t^2 +1))dt=  =∫((t^2 +1)(√(t^2 +1))−(√(t^2 +1)))dt=  =∫(t^2 +1)^(3/2) dt−∫(t^2 +1)^(1/2) dt=            [t=tan(u) → dt=sec^2 (u)du]  =∫sec^2 (u)(tan^2 (u)+1)^(3/2) du−∫sec^2 (u)(tan^2 (u)+1)^(1/2) du=            [tan^2 (u)+1=sec^2 (u)]  =∫sec^5 (u)du−∫sec^3 (u)du    now use the reduction formula  ∫sec^n (α)dα=((sec^(n−2) (α)tan(α))/(n−1))+((n−2)/(n−1))∫sec^(n−2) (α)dα

t2t2+1dt=(t2+11)t2+1dt==((t2+1)t2+1t2+1)dt==(t2+1)32dt(t2+1)12dt=[t=tan(u)dt=sec2(u)du]=sec2(u)(tan2(u)+1)32dusec2(u)(tan2(u)+1)12du=[tan2(u)+1=sec2(u)]=sec5(u)dusec3(u)dunowusethereductionformulasecn(α)dα=secn2(α)tan(α)n1+n2n1secn2(α)dα

Answered by sma3l2996 last updated on 18/May/18

I=∫_0 ^1 t^2 (√(1+t^2 ))dt=∫_0 ^1 t×t(√(1+t^2 ))dt  by parts  u=t⇒u′=1  v′=t(√(1+t^2 ))⇒v=(1/3)(1+t^2 )(√(1+t^2 ))  So   I=(1/3)[t(1+t^2 )(√(1+t^2 ))]_0 ^1 −(1/3)∫_0 ^1 (1+t^2 )(√(1+t^2 ))dt  I=((2(√2))/3)−(1/3)∫_0 ^1 ((√(1+t^2 ))+t^2 (√(1+t^2 )))dt=((2(√2))/3)−(1/3)∫_0 ^1 (√(1+t^2 ))dt−(1/3)I  (4/3)I=((2(√2))/3)−(1/3)∫_0 ^1 (√(1+t^2 ))dt  let  t=sinh(u)⇒dt=cosh(u)du  (√(1+t^2 ))=(√(1+sinh^2 u))=cosh(u)  So   ∫_0 ^1 (√(1+t^2 ))dt=∫_0 ^(sinh^(−1) (1)) cosh^2 (u)du=(1/2)∫_0 ^(sinh^(−1) (1)) (1+cosh(2u))du  =(1/2)[u+(1/2)sinh(2u)]_0 ^(sinh^(−1) (1)) =(1/2)(sinh^(−1) (1)+(√2))  =(1/2)(ln(1+(√2))+(√2))  So  I=((√2)/2)−(1/4)((1/2)ln(1+(√2))+((√2)/2))  I=((7(√2))/8)−(1/8)ln(1+(√2))

I=01t21+t2dt=01t×t1+t2dtbypartsu=tu=1v=t1+t2v=13(1+t2)1+t2SoI=13[t(1+t2)1+t2]011301(1+t2)1+t2dtI=2231301(1+t2+t21+t2)dt=22313011+t2dt13I43I=22313011+t2dtlett=sinh(u)dt=cosh(u)du1+t2=1+sinh2u=cosh(u)So011+t2dt=0sinh1(1)cosh2(u)du=120sinh1(1)(1+cosh(2u))du=12[u+12sinh(2u)]0sinh1(1)=12(sinh1(1)+2)=12(ln(1+2)+2)SoI=2214(12ln(1+2)+22)I=72818ln(1+2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com