Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35426 by Rio Mike last updated on 18/May/18

find the value of x if the inverse  of the matrix  (((x+5        2)),((7               x)) ) is   (((0         0)),((0         0)) )

$${find}\:{the}\:{value}\:{of}\:{x}\:{if}\:{the}\:{inverse} \\ $$$${of}\:{the}\:{matrix}\:\begin{pmatrix}{{x}+\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}}\end{pmatrix}\:{is} \\ $$$$\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix} \\ $$

Commented by prof Abdo imad last updated on 19/May/18

the caracteristic polynom of  A is  det(A −uI) = determinant (((x+5−u        2)),((7              x−u)))  =(x−u)(x−u+5) −14  =(x−u)^2  +5x−5u−14  =u^2  −2x u +x^2  +5x−5u −14  = u^2  −(2x+5)u  +x^2  +5x −14  Cayley hamilton  theorem give p_c (A)=0 ⇒  A^2  −(2x+5)A  +(x^2  +5x −14)I=0⇒  A^2  −(2x+5)A =(x^2  +5x−14)I ⇒  A( A −(2x+5)I)=(x^2  +5x −14)I ⇒  A.((A −(2x+5)I)/(x^2  +5x −14)) =I⇒A −(2x+5)I =0 ⇒   (((x+5       2)),((7              x)) )  − (((2x+5        0 )),((0             2x+5)) )=0 ⇒   (((−x        2)),((7          −x−5)) )=0     but that is impossible  tbe  value of x don t exist ....

$${the}\:{caracteristic}\:{polynom}\:{of}\:\:{A}\:{is} \\ $$$${det}\left({A}\:−{uI}\right)\:=\begin{vmatrix}{{x}+\mathrm{5}−{u}\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}−{u}}\end{vmatrix} \\ $$$$=\left({x}−{u}\right)\left({x}−{u}+\mathrm{5}\right)\:−\mathrm{14} \\ $$$$=\left({x}−{u}\right)^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{5}{u}−\mathrm{14} \\ $$$$={u}^{\mathrm{2}} \:−\mathrm{2}{x}\:{u}\:+{x}^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{5}{u}\:−\mathrm{14} \\ $$$$=\:{u}^{\mathrm{2}} \:−\left(\mathrm{2}{x}+\mathrm{5}\right){u}\:\:+{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}\:\:{Cayley}\:{hamilton} \\ $$$${theorem}\:{give}\:{p}_{{c}} \left({A}\right)=\mathrm{0}\:\Rightarrow \\ $$$${A}^{\mathrm{2}} \:−\left(\mathrm{2}{x}+\mathrm{5}\right){A}\:\:+\left({x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}\right){I}=\mathrm{0}\Rightarrow \\ $$$${A}^{\mathrm{2}} \:−\left(\mathrm{2}{x}+\mathrm{5}\right){A}\:=\left({x}^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{14}\right){I}\:\Rightarrow \\ $$$${A}\left(\:{A}\:−\left(\mathrm{2}{x}+\mathrm{5}\right){I}\right)=\left({x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}\right){I}\:\Rightarrow \\ $$$${A}.\frac{{A}\:−\left(\mathrm{2}{x}+\mathrm{5}\right){I}}{{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}}\:={I}\Rightarrow{A}\:−\left(\mathrm{2}{x}+\mathrm{5}\right){I}\:=\mathrm{0}\:\Rightarrow \\ $$$$\begin{pmatrix}{{x}+\mathrm{5}\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}}\end{pmatrix}\:\:−\begin{pmatrix}{\mathrm{2}{x}+\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}+\mathrm{5}}\end{pmatrix}=\mathrm{0}\:\Rightarrow \\ $$$$\begin{pmatrix}{−{x}\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:−{x}−\mathrm{5}}\end{pmatrix}=\mathrm{0}\:\:\:\:\:{but}\:{that}\:{is}\:{impossible}\:\:{tbe} \\ $$$${value}\:{of}\:{x}\:{don}\:{t}\:{exist}\:.... \\ $$$$ \\ $$

Commented by abdo mathsup 649 cc last updated on 19/May/18

if A^(−1)  =  (((0       0 )),((0        0)) )  is inverse of A we get  A.A^(−1) = I ⇒  (((0      0)),((0       0)) )  = (((1        0 )),((0        1)) )  and this equality is impossible ...

$${if}\:{A}^{−\mathrm{1}} \:=\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:{is}\:{inverse}\:{of}\:{A}\:{we}\:{get} \\ $$$${A}.{A}^{−\mathrm{1}} =\:{I}\:\Rightarrow\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${and}\:{this}\:{equality}\:{is}\:{impossible}\:... \\ $$

Answered by Rio Mike last updated on 19/May/18

 if  the inverse of a matrix is    (((0      0)),((0      0)) )  the it is a singular matrix  hence  x(x+5)−2(7)=0  x^2 +5x−14=0  x^2 −2x+7x−14=0  x(x−2)+7(x−2)  (x−2)(x+7)=0

$$\:{if}\:\:{the}\:{inverse}\:{of}\:{a}\:{matrix}\:{is}\: \\ $$$$\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:{the}\:{it}\:{is}\:{a}\:{singular}\:{matrix} \\ $$$${hence} \\ $$$${x}\left({x}+\mathrm{5}\right)−\mathrm{2}\left(\mathrm{7}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{14}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{7}{x}−\mathrm{14}=\mathrm{0} \\ $$$${x}\left({x}−\mathrm{2}\right)+\mathrm{7}\left({x}−\mathrm{2}\right) \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{7}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com