All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35428 by abdo.msup.com last updated on 18/May/18
find∫x+3x2+x−1dx
Commented by prof Abdo imad last updated on 19/May/18
letputI=∫x+3x2+x−1dxI=12∫2x+6x2+x−1dx=12∫2x+1x2+x−1dx+52∫dxx2+x−1but∫2x+12x2+x−1dx=x2+x−1+λx2+x−1=x2+2x12+14−1−14=(x+12)2−54andcjsngementx+12=52chtgive∫dxx2+x−1=52∫shtdt54(ch2t−1)=52.25∫shtshtdt=t+cbut2x+1=5cht⇒cht=2x+15⇒t=argch(2x+15)=ln(2x+15+{2x+15}2−1)⇒I=x2+x−1+52ln{2x+15+(2x+15)2−1)+λ
Answered by ajfour last updated on 19/May/18
I=12∫2x+1x2+x−1dx+52∫dx(x+12)2−(52)2=x2+x−1+52ln∣x+12+x2+x−1∣+c.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com