Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35428 by abdo.msup.com last updated on 18/May/18

find     ∫    ((x+3)/(√(x^2  +x −1)))dx

$${find}\:\:\:\:\:\int\:\:\:\:\frac{{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} \:+{x}\:−\mathrm{1}}}{dx} \\ $$

Commented by prof Abdo imad last updated on 19/May/18

let put  I  = ∫      ((x+3)/(√(x^2  +x−1)))dx  I  = (1/2) ∫   ((2x+6)/(√(x^2  +x−1)))dx  =(1/2)∫    ((2x+1)/(√(x^2 +x−1)))dx   +(5/2) ∫     (dx/(√(x^2 +x−1))) but  ∫       ((2x+1)/(2(√(x^2  +x−1))))dx =(√(x^2 +x−1))   +λ  x^2  +x−1 = x^2  +2x(1/2) +(1/4) −1−(1/4)  =(x+(1/2))^2  −(5/4)  and cjsngement x+(1/2) =((√5)/2)cht  give  ∫     (dx/(√(x^2  +x−1))) = ((√5)/2)∫      ((sht dt)/(√((5/4)(ch^2 t−1))))  = ((√5)/2) .(2/(√5))  ∫    ((sht)/(sht))dt = t    +c  but 2x+1=(√5) cht⇒  cht  =((2x+1)/(√5)) ⇒ t =argch(((2x+1)/(√5)))  =ln( ((2x+1)/(√5)) +(√({((2x+1)/(√5))}^2 −1)) ) ⇒  I  = (√(x^2  +x−1))   +(5/2)ln{ ((2x+1)/(√5)) +(√((((2x+1)/(√5)))^2  −1))) +λ

$${let}\:{put}\:\:{I}\:\:=\:\int\:\:\:\:\:\:\frac{{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}}{dx} \\ $$$${I}\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\frac{\mathrm{2}{x}+\mathrm{6}}{\sqrt{{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}}{dx}\:\:\:+\frac{\mathrm{5}}{\mathrm{2}}\:\int\:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}}\:{but} \\ $$$$\int\:\:\:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}}{dx}\:=\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}\:\:\:+\lambda \\ $$$${x}^{\mathrm{2}} \:+{x}−\mathrm{1}\:=\:{x}^{\mathrm{2}} \:+\mathrm{2}{x}\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}\:−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$=\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:−\frac{\mathrm{5}}{\mathrm{4}}\:\:{and}\:{cjsngement}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}{cht} \\ $$$${give}\:\:\int\:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}}\:=\:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\int\:\:\:\:\:\:\frac{{sht}\:{dt}}{\sqrt{\frac{\mathrm{5}}{\mathrm{4}}\left({ch}^{\mathrm{2}} {t}−\mathrm{1}\right)}} \\ $$$$=\:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:.\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\:\:\int\:\:\:\:\frac{{sht}}{{sht}}{dt}\:=\:{t}\:\:\:\:+{c}\:\:{but}\:\mathrm{2}{x}+\mathrm{1}=\sqrt{\mathrm{5}}\:{cht}\Rightarrow \\ $$$${cht}\:\:=\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow\:{t}\:={argch}\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{5}}}\right) \\ $$$$={ln}\left(\:\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{5}}}\:+\sqrt{\left\{\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{5}}}\right\}^{\mathrm{2}} −\mathrm{1}}\:\right)\:\Rightarrow \\ $$$${I}\:\:=\:\sqrt{{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}\:\:\:+\frac{\mathrm{5}}{\mathrm{2}}{ln}\left\{\:\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{5}}}\:+\sqrt{\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} \:−\mathrm{1}}\right)\:+\lambda \\ $$

Answered by ajfour last updated on 19/May/18

I=(1/2)∫((2x+1)/(√(x^2 +x−1)))dx+(5/2)∫(dx/(√((x+(1/2))^2 −(((√5)/2))^2 )))  =(√(x^2 +x−1))+(5/2)ln ∣x+(1/2)+(√(x^2 +x−1))∣+c .

$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}}{dx}+\frac{\mathrm{5}}{\mathrm{2}}\int\frac{{dx}}{\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$$=\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}+\frac{\mathrm{5}}{\mathrm{2}}\mathrm{ln}\:\mid{x}+\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{1}}\mid+{c}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com