All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35429 by abdo.msup.com last updated on 18/May/18
find∫012x−1x2+6dx
Commented by prof Abdo imad last updated on 19/May/18
letputI=∫012x−1x2+6.changementx=6shtgiveI=∫0argsh(16)26sht−16ch(t)6chtdt=∫0ln(16+1+16(26sh(t)−1)dt=26[ch(t)]0ln(16+76)−ln(16+76)wehavech(t)=et+e−t2⇒ch{ln(16+76)}=(16+76)+(16+76)−12⇒I=26{(16+76)+(16+76)−12−1}−ln(16+76)
Answered by ajfour last updated on 19/May/18
I=∫012xdxx2+6−∫01dxx2+(6)2=2x2+6∣01−ln∣x+x2+6∣01⇒I=2(7−6)−ln(1+76)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com