Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35438 by prof Abdo imad last updated on 19/May/18

let m>0 and 0<a<b   1) calculate ∫_0 ^∞        ((cos(mx))/((x^2  +a^2 )(x^2  +b^2 )))dx  2)find the value of  ∫_0 ^∞      ((cos(2x))/((x^2 +1)(x^2   +3)))dx

letm>0and0<a<b 1)calculate0cos(mx)(x2+a2)(x2+b2)dx 2)findthevalueof0cos(2x)(x2+1)(x2+3)dx

Commented byprof Abdo imad last updated on 21/May/18

let put I  = ∫_0 ^∞        ((cos(mx))/((x^2  +a^2 )(x^(2 )  +b^2 )))dx  2I = ∫_(−∞) ^(+∞)     ((cos(mx))/((x^2  +a^2 )(x^2  +b^2 )))dx  =Re( ∫_(−∞) ^(+∞)       (e^(imx) /((x^2  +a^2 )(x^2  +b^2 )))dx) let consider  the complex function  ϕ(z) = (e^(imz) /((x^2  +a^2 )(x^2  +b^2 )))  ϕ(z) = (e^(imz) /((x−ia)(x+ia)(x−ib)(x+ib)))  thepoles  of ϕ are  ia,−ia,ib,−ib  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,ia) +Res(ϕ,ib)}  Res(ϕ,ia) = (e^(im(ia)) /(2ia(b^2  −a^2 ))) = (e^(−ma) /(2ia(b^2  −a^2 )))  Res(ϕ,ib) =  (e^(im(ib)) /(2ib(a^2  −b^2 ))) = (e^(−mb) /(2ib(a^2  −b^2 )))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{  (e^(−ma) /(2ia(b^2  −a^2 ))) +  (e^(−mb) /(2ib(a^2  −b^2 )))}  = (π/a) (e^(−ma) /(b^2  −a^2 )) −(π/b)  (e^(−mb) /(b^2  −a^2 ))  = (π/(b^2 −a^2 )){  (e^(−ma) /a) − (e^(−mb) /b)} ⇒  I = (π/(2(a^2  −b^2 ))){  (e^(−mb) /b)  −(e^(−ma) /a)}  2)let take m=2 , a =1, b=(√3)  we get  ∫_0 ^∞      ((cos(2x))/((x^2  +1)(x^2  +3))) = (π/(2(1 −3))){ (e^(−2(√3)) /(√3)) −(e^(−2) /1) }  =−(π/4){  (e^(−2(√3)) /(√3)) − e^(−2) } = (π/4){ e^(−2)   − (e^(−2(√3)) /(√3))}.

letputI=0cos(mx)(x2+a2)(x2+b2)dx 2I=+cos(mx)(x2+a2)(x2+b2)dx =Re(+eimx(x2+a2)(x2+b2)dx)letconsider thecomplexfunction φ(z)=eimz(x2+a2)(x2+b2) φ(z)=eimz(xia)(x+ia)(xib)(x+ib)thepoles ofφareia,ia,ib,ib +φ(z)dz=2iπ{Res(φ,ia)+Res(φ,ib)} Res(φ,ia)=eim(ia)2ia(b2a2)=ema2ia(b2a2) Res(φ,ib)=eim(ib)2ib(a2b2)=emb2ib(a2b2) +φ(z)dz=2iπ{ema2ia(b2a2)+emb2ib(a2b2)} =πaemab2a2πbembb2a2 =πb2a2{emaaembb} I=π2(a2b2){embbemaa} 2)lettakem=2,a=1,b=3weget 0cos(2x)(x2+1)(x2+3)=π2(13){e233e21} =π4{e233e2}=π4{e2e233}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com