Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35440 by prof Abdo imad last updated on 19/May/18

find the value of  ∫_0 ^∞      (dx/((2x^2   +1)^2 ))

findthevalueof0dx(2x2+1)2

Commented by prof Abdo imad last updated on 19/May/18

let put I  = ∫_0 ^∞       (dx/((2x^2 +1)^2 ))  2I  = ∫_(−∞) ^(+∞)    (dx/((2x^2 +1)^2 ))  =(1/4) ∫_(−∞) ^(+∞)     (dx/((x^2  +(1/2))^2 ))  let condider tbe complex function  ϕ(z) =  (1/((z^2  +(1/2))^2 ))  we have  ϕ(z) =  (1/((z−(i/(√2)))^2 (z +(i/(√2)))^2 )) so the?polrs of ϕ are  (i/(√2)) and ((−i)/(√2)) (doubles) and Residus theorem give  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,(i/(√2)))  Res(ϕ,(i/(√2))) =lim_(z→(i/(√2)))   { (z−(i/(√2)))^2 ϕ(z)}^′   =lim_(z→(i/(√2)))    { (z+(i/(√2)))^(−2) }^′   =lim_(z→(i/(√2)))    −2(z +(i/(√2)))^(−3)   =−2 (((2i)/(√2)))^(−3)  =−2((√2) i)^(−3) =2 ((√2))^(−3) .(1/i)  = (1/(i(√2))) ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ  (1/(i(√2))) = π(√2)  2I  =(1/4) π(√2)  ⇒ I = ((π(√2))/8) = ((2π)/(8(√2))) ⇒   I =  (π/(4(√2)))  .

letputI=0dx(2x2+1)22I=+dx(2x2+1)2=14+dx(x2+12)2letcondidertbecomplexfunctionφ(z)=1(z2+12)2wehaveφ(z)=1(zi2)2(z+i2)2sothe?polrsofφarei2andi2(doubles)andResidustheoremgive+φ(z)dz=2iπRes(φ,i2)Res(φ,i2)=limzi2{(zi2)2φ(z)}=limzi2{(z+i2)2}=limzi22(z+i2)3=2(2i2)3=2(2i)3=2(2)3.1i=1i2+φ(z)dz=2iπ1i2=π22I=14π2I=π28=2π82I=π42.

Commented by prof Abdo imad last updated on 19/May/18

I = ∫_0 ^∞         (dx/((2x^2  +1)^2 ))  let use the changement  x=(1/(√2)) tant ⇒ I  = (1/(√2))∫_0 ^(π/2)  ((1+tan^2 t)/((1+tan^2 )^2 ))dt  = (1/(√2)) ∫_0 ^(π/2)     (dt/(1+tan^2 t)) = (1/(√2)) ∫_0 ^(π/2)   cos^2 t dt  =(1/(√2)) ∫_0 ^(π/2)   (((1+cos(2t))/2))dt  = (1/(2(√2)))  (π/2)  + (1/(4(√2)))[ sin(2t)]_0 ^(π/2)   ★   I = (π/(4(√2))) ★

I=0dx(2x2+1)2letusethechangementx=12tantI=120π21+tan2t(1+tan2)2dt=120π2dt1+tan2t=120π2cos2tdt=120π2(1+cos(2t)2)dt=122π2+142[sin(2t)]0π2I=π42

Answered by ajfour last updated on 19/May/18

I=∫_0 ^(  ∞) (dx/((2x^2 +1)^2 ))  let  x=(1/(√2))tan θ  ⇒  dx=(1/(√2))sec^2 θdθ  ⇒ I=(1/(√2))∫cos^2 θdθ  I=(1/(2(√2))) ∫_0 ^(  π/2) (1+cos 2θ)dθ      =(1/(2(√2))) (θ+((sin 2θ)/2))∣_0 ^(π/2)   = (π/(4(√2)))  .

I=0dx(2x2+1)2letx=12tanθdx=12sec2θdθI=12cos2θdθI=1220π/2(1+cos2θ)dθ=122(θ+sin2θ2)0π/2=π42.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com