All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35440 by prof Abdo imad last updated on 19/May/18
findthevalueof∫0∞dx(2x2+1)2
Commented by prof Abdo imad last updated on 19/May/18
letputI=∫0∞dx(2x2+1)22I=∫−∞+∞dx(2x2+1)2=14∫−∞+∞dx(x2+12)2letcondidertbecomplexfunctionφ(z)=1(z2+12)2wehaveφ(z)=1(z−i2)2(z+i2)2sothe?polrsofφarei2and−i2(doubles)andResidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i2)Res(φ,i2)=limz→i2{(z−i2)2φ(z)}′=limz→i2{(z+i2)−2}′=limz→i2−2(z+i2)−3=−2(2i2)−3=−2(2i)−3=2(2)−3.1i=1i2⇒∫−∞+∞φ(z)dz=2iπ1i2=π22I=14π2⇒I=π28=2π82⇒I=π42.
I=∫0∞dx(2x2+1)2letusethechangementx=12tant⇒I=12∫0π21+tan2t(1+tan2)2dt=12∫0π2dt1+tan2t=12∫0π2cos2tdt=12∫0π2(1+cos(2t)2)dt=122π2+142[sin(2t)]0π2★I=π42★
Answered by ajfour last updated on 19/May/18
I=∫0∞dx(2x2+1)2letx=12tanθ⇒dx=12sec2θdθ⇒I=12∫cos2θdθI=122∫0π/2(1+cos2θ)dθ=122(θ+sin2θ2)∣0π/2=π42.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com