All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35456 by math1967 last updated on 19/May/18
∫dxx(x2018+1)
Answered by ajfour last updated on 19/May/18
I=−12018∫−2018x−19dx1+x−2018=−12018ln∣1+1x2018∣+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/May/18
multiplyNrandDrbyx2017∫x2017dxx2018(1+x2018)t=x2018sodt=2018×x2017dx12018∫dtt(t+1)=12018∫(t+1)−tt(t+1)dt=12018{∫dtt−∫dtt+1}=12018{lnt−ln(t+1)}=12018ln(tt+1)=12018ln(x2018x2018+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com