Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 3546 by prakash jain last updated on 15/Dec/15

Σ_(i=1) ^∞ (1/p_i ), p_i  is i^(th)  prime diverges.  Σ_(i=1) ^∞ (1/s_i ), s_i  is i^(th)  whole square converges.  Why?  Even though it appears that we have more  whole squares than primes.

$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{p}_{{i}} },\:{p}_{{i}} \:{is}\:{i}^{{th}} \:{prime}\:{diverges}. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{s}_{{i}} },\:{s}_{{i}} \:{is}\:{i}^{{th}} \:{whole}\:{square}\:{converges}. \\ $$$$\mathrm{Why}? \\ $$$$\mathrm{Even}\:\mathrm{though}\:\mathrm{it}\:\mathrm{appears}\:\mathrm{that}\:\mathrm{we}\:\mathrm{have}\:\mathrm{more} \\ $$$$\mathrm{whole}\:\mathrm{squares}\:\mathrm{than}\:\mathrm{primes}. \\ $$

Commented by Yozzii last updated on 15/Dec/15

Yes.

$${Yes}. \\ $$

Commented by prakash jain last updated on 15/Dec/15

Thanks. It answers the question that  the sum of inverse of prime number can  be divergent if (1/n^2 ) is convergent.

$$\mathrm{Thanks}.\:\mathrm{It}\:\mathrm{answers}\:\mathrm{the}\:\mathrm{question}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{prime}\:\mathrm{number}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{divergent}\:\mathrm{if}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{convergent}. \\ $$

Commented by Filup last updated on 15/Dec/15

Σ_(i=1) ^∞ (1/s_i )=Σ_(i=1) ^∞ (1/(√s_i )) (1/(√s_i ))           (√s_i )∈Z  p_i  has no factors

$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{s}_{{i}} }=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\sqrt{{s}_{{i}} }}\:\frac{\mathrm{1}}{\sqrt{{s}_{{i}} }}\:\:\:\:\:\:\:\:\:\:\:\sqrt{{s}_{{i}} }\in\mathbb{Z} \\ $$$${p}_{{i}} \:{has}\:{no}\:{factors} \\ $$

Commented by Yozzii last updated on 15/Dec/15

(1/3)>(1/9)      (1/7)>(1/(25))  (1/2)>(1/4)       (1/5)>(1/(16))  ∴ (1/p_i )>(1/s_i ) ∀i∈N  ∴ Σ_(i=1) ^∞ (1/p_i )>Σ_(i=1) ^∞ (1/s_i )−(1/1)  1+Σ_(i=1) ^∞ (1/p_i )>Σ_(i=1) ^∞ (1/s_i )  s_i =i^2    i∈Z^+    ∴ Σ_(i=1) ^∞ (1/s_i )=Σ_(i=1) ^∞ (1/i^2 ). p series with p=2.  Since p>1, the series is convergent.

$$\frac{\mathrm{1}}{\mathrm{3}}>\frac{\mathrm{1}}{\mathrm{9}}\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{7}}>\frac{\mathrm{1}}{\mathrm{25}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}>\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{5}}>\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\therefore\:\frac{\mathrm{1}}{{p}_{{i}} }>\frac{\mathrm{1}}{{s}_{{i}} }\:\forall{i}\in\mathbb{N} \\ $$$$\therefore\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{p}_{{i}} }>\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{s}_{{i}} }−\frac{\mathrm{1}}{\mathrm{1}} \\ $$$$\mathrm{1}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{p}_{{i}} }>\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{s}_{{i}} } \\ $$$${s}_{{i}} ={i}^{\mathrm{2}} \:\:\:{i}\in\mathbb{Z}^{+} \: \\ $$$$\therefore\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{s}_{{i}} }=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{i}^{\mathrm{2}} }.\:{p}\:{series}\:{with}\:{p}=\mathrm{2}. \\ $$$${Since}\:{p}>\mathrm{1},\:{the}\:{series}\:{is}\:{convergent}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com