Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 3548 by Yozzii last updated on 15/Dec/15

Find all solutions x to the equation  x^3 +bx^2 +cx+d=0 where b,c,d are   constants from C.

$${Find}\:{all}\:{solutions}\:{x}\:{to}\:{the}\:{equation} \\ $$$${x}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0}\:{where}\:{b},{c},{d}\:{are}\: \\ $$$${constants}\:{from}\:\mathbb{C}.\: \\ $$$$ \\ $$

Answered by RasheedSindhi last updated on 15/Dec/15

Let b=b_1 +b_2 i          c=c_1 +c_2 i          d=d_1 +d_2 i  where b_1 ,b_2 ,c_1 ,c_2 ,d_1 ,d_2  are all reals  x^3 +b_1 x^2 +c_1 x+d_1 =0 ∧b_2 x^2 +c_2 x+d_2 =0

$${Let}\:{b}={b}_{\mathrm{1}} +{b}_{\mathrm{2}} {i} \\ $$$$\:\:\:\:\:\:\:\:{c}={c}_{\mathrm{1}} +{c}_{\mathrm{2}} {i} \\ $$$$\:\:\:\:\:\:\:\:{d}={d}_{\mathrm{1}} +{d}_{\mathrm{2}} {i} \\ $$$${where}\:{b}_{\mathrm{1}} ,{b}_{\mathrm{2}} ,{c}_{\mathrm{1}} ,{c}_{\mathrm{2}} ,{d}_{\mathrm{1}} ,{d}_{\mathrm{2}} \:{are}\:{all}\:{reals} \\ $$$${x}^{\mathrm{3}} +{b}_{\mathrm{1}} {x}^{\mathrm{2}} +{c}_{\mathrm{1}} {x}+{d}_{\mathrm{1}} =\mathrm{0}\:\wedge{b}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{2}} {x}+{d}_{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$

Commented by prakash jain last updated on 15/Dec/15

By substituting:  (x^3 +b_1 x^2 +c_1 x+d_1 )+i(b_2 x^2 +c_2 x+d_2 )=0  It cannot be inferred that   (b_2 x^2 +c_2 x+d_2 ) =0  unless it is given that x∈R.  If x∈C, then (b_2 x^2 +c_2 x+d_2 )=u+v(√(−1))

$$\mathrm{By}\:\mathrm{substituting}: \\ $$$$\left({x}^{\mathrm{3}} +{b}_{\mathrm{1}} {x}^{\mathrm{2}} +{c}_{\mathrm{1}} {x}+{d}_{\mathrm{1}} \right)+{i}\left({b}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{2}} {x}+{d}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{It}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{inferred}\:\mathrm{that}\: \\ $$$$\left({b}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{2}} {x}+{d}_{\mathrm{2}} \right)\:=\mathrm{0} \\ $$$$\mathrm{unless}\:\mathrm{it}\:\mathrm{is}\:\mathrm{given}\:\mathrm{that}\:{x}\in\mathbb{R}. \\ $$$$\mathrm{If}\:{x}\in\mathbb{C},\:\mathrm{then}\:\left({b}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{2}} {x}+{d}_{\mathrm{2}} \right)={u}+{v}\sqrt{−\mathrm{1}} \\ $$

Commented by RasheedSindhi last updated on 15/Dec/15

THαnkS for guidance!

$$\mathcal{TH}\alpha{n}\Bbbk\mathcal{S}\:{for}\:{guidance}! \\ $$$$ \\ $$

Answered by prakash jain last updated on 15/Dec/15

x=y−(b/3)  (y−(b/3))^3 +b(y−(b/3))^2 +c(y−(b/3))+d=0  y^3 −by^2 +y(b^2 /3)−(b^3 /(27))+by^2 −2b^3 (y/3)+(b^3 /9)+cy−((bc)/3)+d=0  y^3 +y(c−(b^3 /3))+(d−((bc)/3)+((2b^3 )/(27)))=0  p=c−(b^3 /3), q=d−((bc)/3)+((2b^3 )/(27))  y^3 +py+q=0  subtitute y=u−v  (u−v)^3 +p(u−v)+q=0  (q−(v^3 −u^3 ))+(u−v)(p−3uv)=0  u−v is a solution if q=v^3 −u^3 , p=3uv  p=3uv⇒v=(p/(3u))  q=v^3 −u^3 ⇒q=(p^3 /(27u^3 ))−u^3     ....(A)  (A) is quadratic in u^3 ⇒u can be found  then we find v.  so we know u−v is solution.  once we know one solution of cubic then  other 2 can be found after factorizing.  There is also a cubic formula which is derived  based on the above steps. But it is very hard  even to type. The steps are easy to remember.

$${x}={y}−\frac{{b}}{\mathrm{3}} \\ $$$$\left({y}−\frac{{b}}{\mathrm{3}}\right)^{\mathrm{3}} +{b}\left({y}−\frac{{b}}{\mathrm{3}}\right)^{\mathrm{2}} +{c}\left({y}−\frac{{b}}{\mathrm{3}}\right)+{d}=\mathrm{0} \\ $$$${y}^{\mathrm{3}} −{by}^{\mathrm{2}} +{y}\frac{{b}^{\mathrm{2}} }{\mathrm{3}}−\frac{{b}^{\mathrm{3}} }{\mathrm{27}}+{by}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{3}} \frac{{y}}{\mathrm{3}}+\frac{{b}^{\mathrm{3}} }{\mathrm{9}}+{cy}−\frac{{bc}}{\mathrm{3}}+{d}=\mathrm{0} \\ $$$${y}^{\mathrm{3}} +{y}\left({c}−\frac{{b}^{\mathrm{3}} }{\mathrm{3}}\right)+\left({d}−\frac{{bc}}{\mathrm{3}}+\frac{\mathrm{2}{b}^{\mathrm{3}} }{\mathrm{27}}\right)=\mathrm{0} \\ $$$${p}={c}−\frac{{b}^{\mathrm{3}} }{\mathrm{3}},\:{q}={d}−\frac{{bc}}{\mathrm{3}}+\frac{\mathrm{2}{b}^{\mathrm{3}} }{\mathrm{27}} \\ $$$${y}^{\mathrm{3}} +{py}+{q}=\mathrm{0} \\ $$$$\mathrm{subtitute}\:{y}={u}−{v} \\ $$$$\left({u}−{v}\right)^{\mathrm{3}} +{p}\left({u}−{v}\right)+{q}=\mathrm{0} \\ $$$$\left({q}−\left({v}^{\mathrm{3}} −{u}^{\mathrm{3}} \right)\right)+\left({u}−{v}\right)\left({p}−\mathrm{3}{uv}\right)=\mathrm{0} \\ $$$${u}−{v}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{if}\:{q}={v}^{\mathrm{3}} −{u}^{\mathrm{3}} ,\:{p}=\mathrm{3}{uv} \\ $$$${p}=\mathrm{3}{uv}\Rightarrow{v}=\frac{{p}}{\mathrm{3}{u}} \\ $$$${q}={v}^{\mathrm{3}} −{u}^{\mathrm{3}} \Rightarrow{q}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}{u}^{\mathrm{3}} }−{u}^{\mathrm{3}} \:\:\:\:....\left({A}\right) \\ $$$$\left({A}\right)\:\mathrm{is}\:\mathrm{quadratic}\:\mathrm{in}\:{u}^{\mathrm{3}} \Rightarrow{u}\:{can}\:{be}\:{found} \\ $$$${then}\:{we}\:{find}\:{v}. \\ $$$${so}\:{we}\:{know}\:{u}−{v}\:{is}\:{solution}. \\ $$$${once}\:{we}\:{know}\:{one}\:{solution}\:{of}\:{cubic}\:{then} \\ $$$${other}\:\mathrm{2}\:{can}\:{be}\:{found}\:{after}\:{factorizing}. \\ $$$$\mathrm{There}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{formula}\:\mathrm{which}\:\mathrm{is}\:\mathrm{derived} \\ $$$$\mathrm{based}\:\mathrm{on}\:\mathrm{the}\:\mathrm{above}\:\mathrm{steps}.\:\mathrm{But}\:\mathrm{it}\:\mathrm{is}\:\mathrm{very}\:\mathrm{hard} \\ $$$$\mathrm{even}\:\mathrm{to}\:\mathrm{type}.\:\mathrm{The}\:\mathrm{steps}\:\mathrm{are}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{remember}. \\ $$

Commented by Yozzii last updated on 15/Dec/15

Thanks a lot. I′m wondering how  one creates such methods because  I′m interested now in solving   a good few of these polynomials,  perhaps up to degree 10 (being   terribly ambitious).

$${Thanks}\:{a}\:{lot}.\:{I}'{m}\:{wondering}\:{how} \\ $$$${one}\:{creates}\:{such}\:{methods}\:{because} \\ $$$${I}'{m}\:{interested}\:{now}\:{in}\:{solving}\: \\ $$$${a}\:{good}\:{few}\:{of}\:{these}\:{polynomials}, \\ $$$${perhaps}\:{up}\:{to}\:{degree}\:\mathrm{10}\:\left({being}\:\right. \\ $$$$\left.{terribly}\:{ambitious}\right). \\ $$$$ \\ $$

Commented by prakash jain last updated on 15/Dec/15

Abel Ruffini Theorem: There is no general  algebraic solution for polynomial of degree  5 or higher with arbitrary coefficients.  So you cannot find a formula.  Formula upto degree 4 are already available.

$$\mathrm{Abel}\:\mathrm{Ruffini}\:\mathrm{Theorem}:\:\mathrm{There}\:\mathrm{is}\:\mathrm{no}\:\mathrm{general} \\ $$$$\mathrm{algebraic}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{polynomial}\:\mathrm{of}\:\mathrm{degree} \\ $$$$\mathrm{5}\:\mathrm{or}\:\mathrm{higher}\:\mathrm{with}\:\mathrm{arbitrary}\:\mathrm{coefficients}. \\ $$$$\mathrm{So}\:\mathrm{you}\:\mathrm{cannot}\:\mathrm{find}\:\mathrm{a}\:\mathrm{formula}. \\ $$$$\mathrm{Formula}\:\mathrm{upto}\:\mathrm{degree}\:\mathrm{4}\:\mathrm{are}\:\mathrm{already}\:\mathrm{available}. \\ $$

Commented by Yozzii last updated on 15/Dec/15

I see. It′d be good to learn the proofs  for degree 4.

$${I}\:{see}.\:{It}'{d}\:{be}\:{good}\:{to}\:{learn}\:{the}\:{proofs} \\ $$$${for}\:{degree}\:\mathrm{4}. \\ $$

Commented by Yozzii last updated on 15/Dec/15

After degree 4 we′d rely on   numerical methods only to solve  polynomials?

$${After}\:{degree}\:\mathrm{4}\:{we}'{d}\:{rely}\:{on}\: \\ $$$${numerical}\:{methods}\:{only}\:{to}\:{solve} \\ $$$${polynomials}? \\ $$

Commented by prakash jain last updated on 15/Dec/15

For a general equation with arbitrary coefficients  only numeric solution. However there are  equation of degree 5 which can be solved  if coefficients meet certain criteria.  So for your further study you may want to  work on solvable equation and extending  the result wherever you can.

$$\mathrm{For}\:\mathrm{a}\:\mathrm{general}\:\mathrm{equation}\:\mathrm{with}\:\mathrm{arbitrary}\:\mathrm{coefficients} \\ $$$$\mathrm{only}\:\mathrm{numeric}\:\mathrm{solution}.\:\mathrm{However}\:\mathrm{there}\:\mathrm{are} \\ $$$$\mathrm{equation}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{5}\:\mathrm{which}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved} \\ $$$$\mathrm{if}\:\mathrm{coefficients}\:\mathrm{meet}\:\mathrm{certain}\:\mathrm{criteria}. \\ $$$$\mathrm{So}\:\mathrm{for}\:\mathrm{your}\:\mathrm{further}\:\mathrm{study}\:\mathrm{you}\:\mathrm{may}\:\mathrm{want}\:\mathrm{to} \\ $$$$\mathrm{work}\:\mathrm{on}\:\mathrm{solvable}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{extending} \\ $$$$\mathrm{the}\:\mathrm{result}\:\mathrm{wherever}\:\mathrm{you}\:\mathrm{can}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com