All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35551 by tanmay.chaudhury50@gmail.com last updated on 20/May/18
Commented by abdo mathsup 649 cc last updated on 21/May/18
letfindthevslueof∫0∞e−ax−e−bxxdxwitha>0,b>0letconsiderf(t)=∫0∞e−ax−e−bxxe−txd3witht>0afterverifyingtheconditionofderivsbilitywehavef′(t)=−∫0∞e−tx{e−ax−e−bx}dx=∫0∞{e−(b+t)x−e−(a+t)x}dx=[−1b+te−(b+t)x+1a+te−(a+t)x]0+∞=1b+t−1a+t⇒f(t)=ln∣b+ta+t∣+cbut∃m>0/∣f(t)∣⩽m∫0∞e−txdx=mt→0(t→+∞)c=limt→+∞{f(t)−ln∣b+ta+t∣}=0⇒f(t)=ln(b+ta+t)and∫0∞e−ax−e−bxxdx=f(0)=ln(ba).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com