Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35551 by tanmay.chaudhury50@gmail.com last updated on 20/May/18

Commented by abdo mathsup 649 cc last updated on 21/May/18

let find the vslue of ∫_0 ^∞    ((e^(−ax)  −e^(−bx) )/x)dx with  a>0,b>0 let consider  f(t) =∫_0 ^∞  ((e^(−ax)  −e^(−bx) )/x)e^(−tx) d3  witht>0 after verifying the condition of  derivsbility we have   f^′ (t) = −∫_0 ^∞   e^(−tx) { e^(−ax)  −e^(−bx) }dx  =∫_0 ^∞   {e^(−(b+t)x)   −e^(−(a+t)x) }dx   =[((−1)/(b+t)) e^(−(b+t)x)   + (1/(a+t)) e^(−(a+t)x) ]_0 ^(+∞)   = (1/(b+t)) −(1/(a+t))  ⇒ f(t) = ln∣((b+t)/(a+t))∣ +c  but ∃m>0 /  ∣f(t)∣ ≤ m ∫_0 ^∞  e^(−tx) dx =(m/t) →0(t→+∞)   c =lim_(t→+∞) { f(t) −ln∣((b+t)/(a+t))∣} =0⇒  f(t) =ln (((b+t)/(a+t)))  and ∫_0 ^∞     ((e^(−ax)  −e^(−bx) )/x)dx  =f(0) =ln((b/a)) .

letfindthevslueof0eaxebxxdxwitha>0,b>0letconsiderf(t)=0eaxebxxetxd3witht>0afterverifyingtheconditionofderivsbilitywehavef(t)=0etx{eaxebx}dx=0{e(b+t)xe(a+t)x}dx=[1b+te(b+t)x+1a+te(a+t)x]0+=1b+t1a+tf(t)=lnb+ta+t+cbutm>0/f(t)m0etxdx=mt0(t+)c=limt+{f(t)lnb+ta+t}=0f(t)=ln(b+ta+t)and0eaxebxxdx=f(0)=ln(ba).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com