All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35589 by abdo mathsup 649 cc last updated on 20/May/18
letI=∫0∞e−tx∣sint∣dtwithx>0 findthevalueofI.
Commented byabdo mathsup 649 cc last updated on 21/May/18
I=∑n=0∞∫nπ(n+1)πe−tx∣sint∣dtchangement t=nπ+ugive I=∑n=0∞∫0πe−nπxe−xu∣sinu∣du =∑n=0∞e−nπx∫0πe−xusinudu butA(x)=∫0πe−xusin(u)du=Im(∫0πe−xu+iudu) =Im(∫0πe(−x+i)udu)but ∫0πe(−x+i)udu=[1−x+ie(−x+i)u]0π =−1x−i{e−xπ+iπ−1}=1+e−πxx−i =x+ix2+1(1+e−πx)⇒A(x)=1+e−πx1+x2 ∑n=0∞e−nπx=∑n=0∞(e−πx)n=11−e−πxso I=11−e−πx1+e−πx1+x2⇒I=1+e−πx(1+x2)(1−e−πx).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com