Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35589 by abdo mathsup 649 cc last updated on 20/May/18

let   I  =  ∫_0 ^∞   e^(−tx)  ∣sint∣dt  with x>0  find the value of I .

letI=0etxsintdtwithx>0 findthevalueofI.

Commented byabdo mathsup 649 cc last updated on 21/May/18

I = Σ_(n=0) ^∞   ∫_(nπ) ^((n+1)π)  e^(−tx) ∣sint∣dt  changement  t =nπ  + u give  I  = Σ_(n=0) ^∞     ∫_0 ^π     e^(−nπx)  e^(−xu)  ∣sinu∣du  = Σ_(n=0) ^∞    e^(−nπx)     ∫_0 ^π   e^(−xu)  sinu du    but  A(x)=∫_0 ^π  e^(−xu)  sin(u)du =Im( ∫_0 ^π  e^(−xu +iu) du)  =Im(  ∫_0 ^π   e^((−x+i)u) du) but  ∫_0 ^π   e^((−x+i)u) du  =[ (1/(−x+i)) e^((−x+i)u) ]_0 ^π   =((−1)/(x−i)){ e^(−xπ  +iπ)  −1}= ((1 +e^(−πx) )/(x−i))  =((x+i)/(x^2 +1))( 1+e^(−πx) )⇒ A(x)= ((1+e^(−πx) )/(1+x^2 ))  Σ_(n=0) ^∞    e^(−nπx)   = Σ_(n=0) ^∞  (e^(−πx) )^n  = (1/(1−e^(−πx) ))  so  I = (1/(1−e^(−πx) )) ((1 +e^(−πx) )/(1+x^2 )) ⇒ I =  ((1+e^(−πx) )/((1+x^2 )(1−e^(−πx) ))) .

I=n=0nπ(n+1)πetxsintdtchangement t=nπ+ugive I=n=00πenπxexusinudu =n=0enπx0πexusinudu butA(x)=0πexusin(u)du=Im(0πexu+iudu) =Im(0πe(x+i)udu)but 0πe(x+i)udu=[1x+ie(x+i)u]0π =1xi{exπ+iπ1}=1+eπxxi =x+ix2+1(1+eπx)A(x)=1+eπx1+x2 n=0enπx=n=0(eπx)n=11eπxso I=11eπx1+eπx1+x2I=1+eπx(1+x2)(1eπx).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com