Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35630 by abdo mathsup 649 cc last updated on 21/May/18

1) find the value of f(x)=∫_0 ^∞  ((1−cos(xt))/t^2 ) e^(−t) dt  2) calculate  ∫_0 ^∞    ((1−cos(t))/t^2 ) e^(−t)  dt .

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 24/May/18

by parts  u^′  = (1/t^2 )  and v =(1−cos(xt))e^(−t)   ⇒  v^′  = xsin(xt) e^(−t)  −(1−cos(xt))e^(−t)   =( x sin(xt) +cos(xt)−1) e^(−t)   f(x) = [ −(1/t) (1−cos(xt))e^(−t) ]_0 ^(+∞)   −∫_0 ^∞    ((−1)/t) ( xsin(xt) +cos(xt) −1)e^(−t)  dt but  1−cos(xt) ∼ ((x^2 t^2 )/2) ⇒ ((1−cos(xt))/t)  ∼  ((tx^2 )/2) ⇒  lim_(t→0)  (((1−cos(xt))e^(−t) )/t) =0 ⇒  f(x) =  x ∫_0 ^∞    ((sin(xt))/t) e^(−t)  dt  +∫_0 ^∞  ((1−cos(xt))/t) e^(−t) dt  let calculate h(x)= ∫_0 ^∞     ((sin(xt))/t) e^(−t)  dt   h^′ (x) = ∫_0 ^∞     cos(xt) e^(−t)  dt =Re(∫_0 ^∞  e^(ixt−t) dt)  ∫_0 ^∞    e^((−1 +ix)t) dt = [ (1/(−1+ix)) e^((−1+ix)t) ]_0 ^(+∞)   = (1/(−1+ix)) = ((−1)/(1−ix)) = ((−1−ix)/(1+x^2 )) ⇒ h^′ (x) = ((−1)/(1+x^2 ))  ⇒ h(x) =λ −arctan(x)  but λ =h(0)=0 ⇒  h(x) =−arctan(x)

$${by}\:{parts}\:\:{u}^{'} \:=\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:\:{and}\:{v}\:=\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} \:\:\Rightarrow \\ $$$${v}^{'} \:=\:{xsin}\left({xt}\right)\:{e}^{−{t}} \:−\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} \\ $$$$=\left(\:{x}\:{sin}\left({xt}\right)\:+{cos}\left({xt}\right)−\mathrm{1}\right)\:{e}^{−{t}} \\ $$$${f}\left({x}\right)\:=\:\left[\:−\frac{\mathrm{1}}{{t}}\:\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{−\mathrm{1}}{{t}}\:\left(\:{xsin}\left({xt}\right)\:+{cos}\left({xt}\right)\:−\mathrm{1}\right){e}^{−{t}} \:{dt}\:{but} \\ $$$$\mathrm{1}−{cos}\left({xt}\right)\:\sim\:\frac{{x}^{\mathrm{2}} {t}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}\:\:\sim\:\:\frac{{tx}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} \:\frac{\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} }{{t}}\:=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\:{x}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt}\:\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}\:{e}^{−{t}} {dt} \\ $$$${let}\:{calculate}\:{h}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt}\: \\ $$$${h}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{cos}\left({xt}\right)\:{e}^{−{t}} \:{dt}\:={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{{ixt}−{t}} {dt}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{\left(−\mathrm{1}\:+{ix}\right){t}} {dt}\:=\:\left[\:\frac{\mathrm{1}}{−\mathrm{1}+{ix}}\:{e}^{\left(−\mathrm{1}+\boldsymbol{{ix}}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\:\frac{\mathrm{1}}{−\mathrm{1}+{ix}}\:=\:\frac{−\mathrm{1}}{\mathrm{1}−{ix}}\:=\:\frac{−\mathrm{1}−{ix}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow\:{h}^{'} \left({x}\right)\:=\:\frac{−\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{h}\left({x}\right)\:=\lambda\:−{arctan}\left({x}\right)\:\:{but}\:\lambda\:={h}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow \\ $$$${h}\left({x}\right)\:=−{arctan}\left({x}\right) \\ $$

Commented by abdo mathsup 649 cc last updated on 24/May/18

let calculate K(x) = ∫_0 ^∞   ((1 −cos(xt))/t) e^(−t) dt  K^′ (x) = ∫_0 ^∞   sin(xt) e^(−t) dt =Im( ∫_0 ^∞  e^(ixt −t) dt)  = Im( ∫_0 ^∞   e^((−1+ix)t) dt) = ((−x)/(1+x^2 )) ⇒  K(x)= λ −(1/2)ln(1+x^2 )  but  λ =K(0)=0 ⇒  K(x) = −(1/2)ln(1+x^2 ) ⇒  f(x) = −x arctan(x) −(1/2)ln(1+x^2 )

$${let}\:{calculate}\:{K}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}\:−{cos}\left({xt}\right)}{{t}}\:{e}^{−{t}} {dt} \\ $$$${K}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{sin}\left({xt}\right)\:{e}^{−{t}} {dt}\:={Im}\left(\:\int_{\mathrm{0}} ^{\infty} \:{e}^{{ixt}\:−{t}} {dt}\right) \\ $$$$=\:{Im}\left(\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\mathrm{1}+{ix}\right){t}} {dt}\right)\:=\:\frac{−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${K}\left({x}\right)=\:\lambda\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\:{but}\:\:\lambda\:={K}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow \\ $$$${K}\left({x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:−{x}\:{arctan}\left({x}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$

Commented by abdo mathsup 649 cc last updated on 24/May/18

error in the final line   f(x)= −x arctan(x) +(1/2)ln(1+x^2 ).

$${error}\:{in}\:{the}\:{final}\:{line}\: \\ $$$${f}\left({x}\right)=\:−{x}\:{arctan}\left({x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right). \\ $$

Commented by abdo mathsup 649 cc last updated on 24/May/18

2) we have proved that   ∫_0 ^∞     ((1−cos(xt))/t^2 ) e^(−t)  dt =(1/2)ln(1+x^2 ) −x arctan(x)  let take x=1 ⇒  ∫_0 ^∞     ((1−cos(t))/t^2 ) e^(−t) = (1/2)ln(2) −(π/4) .

$$\left.\mathrm{2}\right)\:{we}\:{have}\:{proved}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:−{x}\:{arctan}\left({x}\right) \\ $$$${let}\:{take}\:{x}=\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} =\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:−\frac{\pi}{\mathrm{4}}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 24/May/18

error in line 8  f(x)= x ∫_0 ^∞   ((sin(xt))/t) e^(−t)  dt −∫_0 ^∞  ((1−cos(xt))/t)e^(−t)  dt

$${error}\:{in}\:{line}\:\mathrm{8} \\ $$$${f}\left({x}\right)=\:{x}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt}\:−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}{e}^{−{t}} \:{dt} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com