Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35632 by abdo mathsup 649 cc last updated on 21/May/18

let ϕ(x)= (1/(√(a^2 −x^2 )))  if ∣x∣<a  and ϕ(x)=0 if ∣x∣≥a  find the fourier transform of ϕ .

$${let}\:\varphi\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:\:{if}\:\mid{x}\mid<{a}\:\:{and}\:\varphi\left({x}\right)=\mathrm{0}\:{if}\:\mid{x}\mid\geqslant{a} \\ $$ $${find}\:{the}\:{fourier}\:{transform}\:{of}\:\varphi\:. \\ $$

Commented byabdo mathsup 649 cc last updated on 21/May/18

F(f(x)) = (1/(√(2π)))∫_(−∞) ^(+∞)   f(t)e^(−ixt)  dt .

$${F}\left({f}\left({x}\right)\right)\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\int_{−\infty} ^{+\infty} \:\:{f}\left({t}\right){e}^{−{ixt}} \:{dt}\:. \\ $$

Commented byabdo mathsup 649 cc last updated on 24/May/18

we have F(ϕ(x))= (1/(√(2π))) ∫_(−∞) ^(+∞)  ϕ(t) e^(−ixt)  dt and ϕ is even  F(ϕ(x))o= (1/(√(2π))) ∫_(−∞) ^(+∞)  ϕ(t) e^(−ixt)  dt  =(1/(√(2π))) ∫_(−a) ^a    (e^(−ixt) /(√(a^2  −t^2 ))) dt  =(√(2/π))  ∫_0 ^a    ((cos(xt))/(√(a^2  −t^2 )))dt   let find   w(x) =∫_0 ^a       ((cos(xt))/(√(a^2  −t^2 )))dt we hsve  w^′ (x) = ∫_0 ^a   ((−t sin(xt))/(√(a^2  −t^2 )))   and by parts  w^′ (x)  = [ (√(a^2  −t^2 )) sin(xt)]_0 ^a  −∫_0 ^a  (√(a^2  −t^2 )) x cos(xt)dt  = −x ∫_0 ^a   (√(a^2  −t^2  ))  cos(xt)dt   chsngement t =asinα  give w^′ (x) = ∫_0 ^(π/2)   a cos(α)cos(ax sinα) a cosα dα  = a^2   ∫_0 ^(π/2)   cos^2 (α) cos(ax sinα)dα  =a^2   ∫_0 ^(π/2)  cos(α) (cos(α) cos(ax sinα))dα  =a^2   { (1/(ax)) sin(ax sin(α))cos(α)]_0 ^(π/2)   − ∫_0 ^(π/2)   −sin(α) sin(ax sinα) dα}  = ∫_0 ^(π/2)   sin(α) sin(ax sinα)dα ....be continued...

$${we}\:{have}\:{F}\left(\varphi\left({x}\right)\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} \:\varphi\left({t}\right)\:{e}^{−{ixt}} \:{dt}\:{and}\:\varphi\:{is}\:{even} \\ $$ $${F}\left(\varphi\left({x}\right)\right){o}=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} \:\varphi\left({t}\right)\:{e}^{−{ixt}} \:{dt} \\ $$ $$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−{a}} ^{{a}} \:\:\:\frac{{e}^{−{ixt}} }{\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }}\:{dt} \\ $$ $$=\sqrt{\frac{\mathrm{2}}{\pi}}\:\:\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{{cos}\left({xt}\right)}{\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }}{dt}\:\:\:{let}\:{find}\: \\ $$ $${w}\left({x}\right)\:=\int_{\mathrm{0}} ^{{a}} \:\:\:\:\:\:\frac{{cos}\left({xt}\right)}{\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }}{dt}\:{we}\:{hsve} \\ $$ $${w}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{{a}} \:\:\frac{−{t}\:{sin}\left({xt}\right)}{\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }}\:\:\:{and}\:{by}\:{parts} \\ $$ $${w}^{'} \left({x}\right)\:\:=\:\left[\:\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }\:{sin}\left({xt}\right)\right]_{\mathrm{0}} ^{{a}} \:−\int_{\mathrm{0}} ^{{a}} \:\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }\:{x}\:{cos}\left({xt}\right){dt} \\ $$ $$=\:−{x}\:\int_{\mathrm{0}} ^{{a}} \:\:\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} \:}\:\:{cos}\left({xt}\right){dt}\:\:\:{chsngement}\:{t}\:={asin}\alpha \\ $$ $${give}\:{w}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{a}\:{cos}\left(\alpha\right){cos}\left({ax}\:{sin}\alpha\right)\:{a}\:{cos}\alpha\:{d}\alpha \\ $$ $$=\:{a}^{\mathrm{2}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{cos}^{\mathrm{2}} \left(\alpha\right)\:{cos}\left({ax}\:{sin}\alpha\right){d}\alpha \\ $$ $$={a}^{\mathrm{2}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\alpha\right)\:\left({cos}\left(\alpha\right)\:{cos}\left({ax}\:{sin}\alpha\right)\right){d}\alpha \\ $$ $$={a}^{\mathrm{2}} \:\:\left\{\:\frac{\mathrm{1}}{{ax}}\:{sin}\left({ax}\:{sin}\left(\alpha\right)\right){cos}\left(\alpha\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$ $$\left.−\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:−{sin}\left(\alpha\right)\:{sin}\left({ax}\:{sin}\alpha\right)\:{d}\alpha\right\} \\ $$ $$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{sin}\left(\alpha\right)\:{sin}\left({ax}\:{sin}\alpha\right){d}\alpha\:....{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com