All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 35726 by abdo mathsup 649 cc last updated on 22/May/18
findlimx→01−cos(sinx)x2
Commented by abdo mathsup 649 cc last updated on 23/May/18
weknowthat1−cosuu2∼12(u∈v(0))so1−cos(sinx)x2=1−cos(sinx)sin2x.sin2xx2∼12becausesin2xx2∼1(x→0)solimx→01−cos(sinx)x2=12.
Answered by $@ty@m last updated on 22/May/18
limx→01−cos(sinx)x2×1+cos(sinx)1+cos(sinx)limx→01−cos2(sinx)x2×11+cos(sinx)limx→0sin2(sinx)sin2x×sin2xx2×11+cos(sinx){limx→0sin(sinx)sinx}2×{limx→0sinxx}2×limx→011+cos(sinx)12×12×1212
Terms of Service
Privacy Policy
Contact: info@tinkutara.com