Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35732 by ajfour last updated on 22/May/18

Commented by ajfour last updated on 22/May/18

Find moment of inertia of disc  about an axis, as in figure above,  if density of disc be proportional  to sin θ .

$${Find}\:{moment}\:{of}\:{inertia}\:{of}\:{disc} \\ $$$${about}\:{an}\:{axis},\:{as}\:{in}\:{figure}\:{above}, \\ $$$${if}\:{density}\:{of}\:{disc}\:{be}\:{proportional} \\ $$$${to}\:\mathrm{sin}\:\theta\:. \\ $$

Answered by ajfour last updated on 23/May/18

chord length at angle θ is      ρ= 2Rsin θ  let areal density be δ=ksin θ  dI=(rsin θ)^2 dm   ; r being distance of  a mass element from point of  tangency of disc with axis of  rotation.  ∫dI=∫_0 ^(  π) ∫_0 ^(  ρ) (rsin θ)^2 (ksin θ)(rdθ)dr         = k∫_0 ^(  π) [(sin^3 θ)∫_0 ^(  ρ) r^3 dr]dθ         = k∫_0 ^(  π) (sin^3 θ)((ρ^4 /4))dθ         as ρ=2Rsin θ, we have      I= 4kR^( 4) ∫_0 ^(  π) sin^7 θdθ        =−4kR^( 4) ∫_0 ^(  π) (1−cos^2 θ)^3 (−sin θdθ)  let  cos θ =t    ⇒  −sin θdθ=dt        I =−4kR^( 4) ∫_1 ^(  −1) (1−t^2 )^3 dt           = 8R^( 2) k∫_0 ^(  1) (1−3t^2 +3t^4 −t^6 )dt           =8kR^( 4) [t−t^3 +((3t^5 )/5)−(t^7 /7)]∣_0 ^1   ⇒    I=8kR^( 4) (((16)/(35)))  or     I= ((128kR^( 4) )/(35)) .

$${chord}\:{length}\:{at}\:{angle}\:\theta\:{is} \\ $$$$\:\:\:\:\rho=\:\mathrm{2}{R}\mathrm{sin}\:\theta \\ $$$${let}\:{areal}\:{density}\:{be}\:\delta={k}\mathrm{sin}\:\theta \\ $$$${dI}=\left({r}\mathrm{sin}\:\theta\right)^{\mathrm{2}} {dm}\:\:\:;\:{r}\:{being}\:{distance}\:{of} \\ $$$${a}\:{mass}\:{element}\:{from}\:{point}\:{of} \\ $$$${tangency}\:{of}\:{disc}\:{with}\:{axis}\:{of} \\ $$$${rotation}. \\ $$$$\int{dI}=\int_{\mathrm{0}} ^{\:\:\pi} \int_{\mathrm{0}} ^{\:\:\rho} \left({r}\mathrm{sin}\:\theta\right)^{\mathrm{2}} \left({k}\mathrm{sin}\:\theta\right)\left({rd}\theta\right){dr} \\ $$$$\:\:\:\:\:\:\:=\:{k}\int_{\mathrm{0}} ^{\:\:\pi} \left[\left(\mathrm{sin}\:^{\mathrm{3}} \theta\right)\int_{\mathrm{0}} ^{\:\:\rho} {r}^{\mathrm{3}} {dr}\right]{d}\theta \\ $$$$\:\:\:\:\:\:\:=\:{k}\int_{\mathrm{0}} ^{\:\:\pi} \left(\mathrm{sin}\:^{\mathrm{3}} \theta\right)\left(\frac{\rho^{\mathrm{4}} }{\mathrm{4}}\right){d}\theta \\ $$$$\:\:\:\:\:\:\:{as}\:\rho=\mathrm{2}{R}\mathrm{sin}\:\theta,\:{we}\:{have} \\ $$$$\:\:\:\:{I}=\:\mathrm{4}{kR}^{\:\mathrm{4}} \int_{\mathrm{0}} ^{\:\:\pi} \mathrm{sin}\:^{\mathrm{7}} \theta{d}\theta \\ $$$$\:\:\:\:\:\:=−\mathrm{4}{kR}^{\:\mathrm{4}} \int_{\mathrm{0}} ^{\:\:\pi} \left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right)^{\mathrm{3}} \left(−\mathrm{sin}\:\theta{d}\theta\right) \\ $$$${let}\:\:\mathrm{cos}\:\theta\:={t}\:\:\:\:\Rightarrow\:\:−\mathrm{sin}\:\theta{d}\theta={dt} \\ $$$$\:\:\:\:\:\:{I}\:=−\mathrm{4}{kR}^{\:\mathrm{4}} \int_{\mathrm{1}} ^{\:\:−\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{3}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{8}{R}^{\:\mathrm{2}} {k}\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left(\mathrm{1}−\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{4}} −{t}^{\mathrm{6}} \right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{8}{kR}^{\:\mathrm{4}} \left[{t}−{t}^{\mathrm{3}} +\frac{\mathrm{3}{t}^{\mathrm{5}} }{\mathrm{5}}−\frac{{t}^{\mathrm{7}} }{\mathrm{7}}\right]\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\:{I}=\mathrm{8}{kR}^{\:\mathrm{4}} \left(\frac{\mathrm{16}}{\mathrm{35}}\right) \\ $$$${or}\:\:\:\:\:\boldsymbol{{I}}=\:\frac{\mathrm{128}\boldsymbol{{kR}}^{\:\mathrm{4}} }{\mathrm{35}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com