Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35821 by prof Abdo imad last updated on 24/May/18

let f(t) = ∫_0 ^∞   ((e^(−ax)  −e^(−bx) )/x^2 ) e^(−tx^2 ) dx   with t>0  1) calculate f^′ (t)  2)find a simple form of f(t)  3) find the value of ∫_0 ^∞   ((e^(−2x)   −e^(−x) )/x^2 ) e^(−3x^2 ) dx

letf(t)=0eaxebxx2etx2dxwitht>0 1)calculatef(t) 2)findasimpleformoff(t) 3)findthevalueof0e2xexx2e3x2dx

Commented byprof Abdo imad last updated on 31/May/18

f(t) = ∫_(−∞) ^(+∞)    ((e^(−ax)  −e^(−bx) )/x^2 ) e^(−tx^2 )     with t>0

f(t)=+eaxebxx2etx2witht>0

Commented byprof Abdo imad last updated on 31/May/18

3) find the value of  ∫_(−∞) ^(+∞)   ((e^(−2x)  −e^(−x) )/x^2 )e^(−3x^2 )  dx

3)findthevalueof+e2xexx2e3x2dx

Commented byabdo mathsup 649 cc last updated on 01/Jun/18

we have f^′ (t) = −∫_(−∞) ^(+∞) (e^(−ax)  −e^(−bx) ) e^(−tx^2 ) dx  = ∫_(−∞) ^(+∞)    e^(−bx −tx^2 ) dx  −∫_(−∞) ^(+∞)  e^(−ax −tx^2 ) dx but  ∫_(−∞) ^(+∞)   e^(−tx^2 −ax)  dx =∫_(−∞) ^(+∞)    e^(−{ ((√t)x)^2   +2 (a/(2(√t)))x   +(a^2 /(4t)) −(a^2 /(4t))}) dx  = ∫_(−∞) ^(+∞)    e^(−{ ((√t) x  +(a/(2(√t))))^2 } +(a^2 /(4t)))   dx  = e^(a^2 /(4t))   ∫_(−∞) ^(+∞)      e^(−u^2 ) (du/(√t)) (chang. (√t)x +(a/(2(√t))) =u)  =  (e^(a^2 /(4t)) /(√t)) (√π)   ⇒ f(t) = (√π)  ∫_. ^t    (e^(a^2 /(4u)) /(√u))du +λ   changement (√u)=xgive  f(t) = (√π)  ∫_. ^(√t)    (e^(a^2 /(4x^2 )) /x) 2xdx +λ  = 2(√π)   ∫_. ^(√t)     e^(a^2 /(4x^2 ))  dx +λ

wehavef(t)=+(eaxebx)etx2dx =+ebxtx2dx+eaxtx2dxbut +etx2axdx=+e{(tx)2+2a2tx+a24ta24t}dx =+e{(tx+a2t)2}+a24tdx =ea24t+eu2dut(chang.tx+a2t=u) =ea24ttπf(t)=π.tea24uudu+λ changementu=xgive f(t)=π.tea24x2x2xdx+λ =2π.tea24x2dx+λ

Commented byabdo mathsup 649 cc last updated on 01/Jun/18

error from line 6  ∫_(−∞) ^(+∞)   e^(−tx^2  −ax) dx = ((√π)/(√t)) e^(a^2 /(4t))   also  ∫_(−∞) ^(+∞)   e^(−tx^2 −bx) dx =((√π)/(√t)) e^(b^2 /(4t))  ⇒  f^′ (t) = (√π){  (e^(b^2 /(4t)) /(√t)) −(e^(a^2 /(4t)) /(√t))} ⇒  f(t) = (√π)  ∫_1 ^t    ((e^(b^2 /(4u))   −e^(a^2 /(4u)) )/(√u)) du +c    =_((√u) =x)   (√π)  ∫_1 ^(√t)     ((e^(b^2 /(4x^2 ))   − e^(a^2 /(4x^2 )) )/x) 2x dx +c  = 2(√π)  ∫_1 ^(√t)     { e^(b^2 /(4x^2   ))  − e^(a^2 /(4x^2 )) } dx +c  c =f(1)

errorfromline6 +etx2axdx=πtea24talso +etx2bxdx=πteb24t f(t)=π{eb24ttea24tt} f(t)=π1teb24uea24uudu+c =u=xπ1teb24x2ea24x2x2xdx+c =2π1t{eb24x2ea24x2}dx+c c=f(1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com