Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 35828 by ajfour last updated on 24/May/18

Commented by ajfour last updated on 24/May/18

Find the electric field at point P  on the y axis at a distance y from  origin due to a uniformly charged  square wire frame of linear charge  density λ. The frame lies in xz  plane with sides of frame // to  x and z axis with centre of frame  at origin.

$${Find}\:{the}\:{electric}\:{field}\:{at}\:{point}\:{P} \\ $$$${on}\:{the}\:{y}\:{axis}\:{at}\:{a}\:{distance}\:{y}\:{from} \\ $$$${origin}\:{due}\:{to}\:{a}\:{uniformly}\:{charged} \\ $$$${square}\:{wire}\:{frame}\:{of}\:{linear}\:{charge} \\ $$$${density}\:\lambda.\:{The}\:{frame}\:{lies}\:{in}\:{xz} \\ $$$${plane}\:{with}\:{sides}\:{of}\:{frame}\://\:{to} \\ $$$${x}\:{and}\:{z}\:{axis}\:{with}\:{centre}\:{of}\:{frame} \\ $$$${at}\:{origin}. \\ $$

Commented by ajfour last updated on 24/May/18

Can we also find Electric Potential  at an arbitrary point P (x,y,z)  and hence find Electric field too  by taking partial derivatives ?

$${Can}\:{we}\:{also}\:{find}\:{Electric}\:{Potential} \\ $$$${at}\:{an}\:{arbitrary}\:{point}\:{P}\:\left({x},{y},{z}\right) \\ $$$${and}\:{hence}\:{find}\:{Electric}\:{field}\:{too} \\ $$$${by}\:{taking}\:{partial}\:{derivatives}\:? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 24/May/18

let from mid point of AB at a distance x we  consider dx elemetary length. charge in dx  element=λdx  electricfield at p is  dE=(1/(4Πε_0 ))×((λdx)/({((l/2))^2 +x^2 +y^2 }))  effective dE is dEcosθ  cosθ=(y/(√(((l/2))^2 +x^2 +y^(2 _  ) )))  (dE)_e =(1/(4Πε_0 ))×((λdx)/({((l/2))^2 +x^2 +y^2 }))×(y/(√(((l/2))^2 +x^2 +y^2 )))  (dE)_e =(1/(4Πε_0 ))×((λydx)/({((l/2))^2 +y^2 +x^2 }^(3/2) ))  (E)_e =((λy)/(4Πε_0 ))∫_((−l)/2) ^(l/2)  (dx/({((l/2))^2 +y^2 +x^2 }^(3/2) ))  supose the value of this intregation is I  same result for BC,CD,DA  so Eletric field at P for ABCD is 4I  give me time to solve the intregal  see the method...  let  I′=∫(dx/({((l/2))^2 +y^2 +x^2  }^(3/2) ))  let x={(√(((l/2))^2 +y^2 )) } tanθ  dx={(√(((l/2))^2 +y^2 ))  }sec^2 θ dθ  ∫(({(√(((l/2))^2 +y^2 ))}sec^2 θ dθ)/([{((l/2))^2 +y^2 }sec^2 θ]^(3/2) ))  =(1/({((l/2))^2 +y^2 }))×∫(dθ/(secθ))  =(1/({((l/2))^2 +y^2 }))×sinθ  =(1/({((l/2))^2 +y^2 }))×(x/({((l/2))^2 +y^2 +x^2 }^(1/2) ))  nos putting the limits  =(1/({((l/2))^2 +y^2 }))×∣(x/({((l/2))^2 +y^2 +x^2 }^(1/2) ))∣_(−(l/2)) ^(l/2)   =(1/({((l/2))^2 +y^2 }))×(l/({((l/2))^2 +y^2 +((l/2))^2 }^(1/2) ))  =(1/({((l/2))^2 +y^2 }))×(l/({(l^2 /2)+y^2 }^((1/2) ) ))  hence required electric field is  =4×((λy)/(4Πε_0 ))×(1/({((l/2))^2 +y^2 }))×(l/({(l^2 /2)+y^2 }^(1/2) ))

$${let}\:{from}\:{mid}\:{point}\:{of}\:{AB}\:{at}\:{a}\:{distance}\:{x}\:{we} \\ $$$${consider}\:{dx}\:{elemetary}\:{length}.\:{charge}\:{in}\:{dx} \\ $$$${element}=\lambda{dx} \\ $$$${electricfield}\:{at}\:{p}\:{is} \\ $$$${dE}=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\lambda{dx}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}} \\ $$$${effective}\:{dE}\:{is}\:{dEcos}\theta \\ $$$${cos}\theta=\frac{{y}}{\sqrt{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} +{y}^{\mathrm{2}\:_{\:} } }} \\ $$$$\left({dE}\right)_{{e}} =\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\lambda{dx}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\frac{{y}}{\sqrt{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} \\ $$$$\left({dE}\right)_{{e}} =\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\lambda{ydx}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} \right\}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left({E}\right)_{{e}} =\frac{\lambda{y}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }\int_{\frac{−{l}}{\mathrm{2}}} ^{\frac{{l}}{\mathrm{2}}} \:\frac{{dx}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} \right\}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${supose}\:{the}\:{value}\:{of}\:{this}\:{intregation}\:{is}\:{I} \\ $$$${same}\:{result}\:{for}\:{BC},{CD},{DA} \\ $$$${so}\:{Eletric}\:{field}\:{at}\:{P}\:{for}\:{ABCD}\:{is}\:\mathrm{4}{I} \\ $$$${give}\:{me}\:{time}\:{to}\:{solve}\:{the}\:{intregal} \\ $$$${see}\:{the}\:{method}... \\ $$$${let}\:\:{I}'=\int\frac{{dx}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} \:\right\}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${let}\:{x}=\left\{\sqrt{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\right\}\:{tan}\theta \\ $$$${dx}=\left\{\sqrt{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:\right\}{sec}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$\int\frac{\left\{\sqrt{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\right\}{sec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}{sec}^{\mathrm{2}} \theta\right]^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\int\frac{{d}\theta}{{sec}\theta} \\ $$$$=\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×{sin}\theta \\ $$$$=\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\frac{{x}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$${nos}\:{putting}\:{the}\:{limits} \\ $$$$=\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\mid\frac{{x}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}} }\mid_{−\frac{{l}}{\mathrm{2}}} ^{\frac{{l}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\frac{{l}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$$=\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\frac{{l}}{\left\{\frac{{l}^{\mathrm{2}} }{\mathrm{2}}+{y}^{\mathrm{2}} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}\:} } \\ $$$${hence}\:{required}\:{electric}\:{field}\:{is} \\ $$$$=\mathrm{4}×\frac{\lambda{y}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\mathrm{1}}{\left\{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}}×\frac{{l}}{\left\{\frac{{l}^{\mathrm{2}} }{\mathrm{2}}+{y}^{\mathrm{2}} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$$ \\ $$

Commented by prof Abdo imad last updated on 25/May/18

you are a train and the train must finich his  road....

$${you}\:{are}\:{a}\:{train}\:{and}\:{the}\:{train}\:{must}\:{finich}\:{his} \\ $$$${road}.... \\ $$

Commented by ajfour last updated on 24/May/18

Beautiful ! Thanks Tanmay Sir.

$${Beautiful}\:!\:{Thanks}\:{Tanmay}\:{Sir}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 24/May/18

i am govt employee...interested in physics  and math...food of brain..

$${i}\:{am}\:{govt}\:{employee}...{interested}\:{in}\:{physics} \\ $$$${and}\:{math}...{food}\:{of}\:{brain}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com