Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35832 by abdo mathsup 649 cc last updated on 24/May/18

find the value of  f(λ) = ∫_(−a) ^a    (dx/((λ +_ x^2 )^(3/2) ))  λ∈R .

findthevalueoff(λ)=aadx(λ+x2)32λR.

Commented by abdo.msup.com last updated on 25/May/18

case 1 ifλ>0 let use the changement  x=(√λ) tan(t)  f(λ) = ∫_(−arctan((a/λ))) ^(arctan((a/λ)))    ((√λ)/(λ^(3/2) (1+tan^2 (t))^(3/2) )) (1+tan^2 t)dt  =(1/λ)∫_(−arctan((a/(√λ)))) ^(arctan( (a/(√λ))) )    (1/((1+tan^2 t)^(1/2) ))dt  = (2/λ) ∫_0 ^(arctan((a/(√λ))))   cos(t) dt  =(2/λ) [ sin(t)]_0 ^(arctan((a/(√λ))))   = (2/λ) sin(arctan((a/(√λ))))  but we have sin(arctanx) = (x/(√(1+x^2 )))  so sin(arctan((a/(√λ)))) = (a/((√λ) (√(1+(a^2 /λ)))))  = (a/(√(λ +a^2 ))) ⇒f(λ) = ((2a)/(λ(√(λ+a^2 ))))

case1ifλ>0letusethechangementx=λtan(t)f(λ)=arctan(aλ)arctan(aλ)λλ32(1+tan2(t))32(1+tan2t)dt=1λarctan(aλ)arctan(aλ)1(1+tan2t)12dt=2λ0arctan(aλ)cos(t)dt=2λ[sin(t)]0arctan(aλ)=2λsin(arctan(aλ))butwehavesin(arctanx)=x1+x2sosin(arctan(aλ))=aλ1+a2λ=aλ+a2f(λ)=2aλλ+a2

Commented by prof Abdo imad last updated on 25/May/18

case 2 if  λ<0 ⇒ −λ >0 let put α =−λ  f(λ) = ∫_(−a) ^a    (dx/((x^2  −α)^(3/2) ))  .changement x=(√α)ch(t)  give   f(λ) = ∫_(argch( ((−a)/(√α)))) ^(argch( (a/(√α))))      (((√α)  sh(t))/(α^(3/2) ( ch^2 (t)−1)^(3/2) ))dt  = (1/α)∫_(argch(((−a)/(√α)))) ^(argch( (a/(√α))))     ((sh(t))/(sh^3 (t)))dt   = (2/α) ∫_(argch( ((−a)/(√α)))) ^(argch((a/(√α))))      (dt/(ch(2t)−1))  = (2/α) ∫_(ln( −(a/(√κ))  +(√( (a^2 /α) −1)))) ^(ln( (a/(√α)) +(√( (a^2 /α)−1)))        (dt/(((e^(2t)  +e^(−2t) )/2) −1))  = (4/α) ∫_(ln(−(a/(√α)) +(√( (a^2 /α)−1)))) ^(ln( (a/(√α)) +(√((a^2 /α)−1))))      (dt/(e^(2t)  +e^(−2t)  −2)) ...  be continued...

case2ifλ<0λ>0letputα=λf(λ)=aadx(x2α)32.changementx=αch(t)givef(λ)=argch(aα)argch(aα)αsh(t)α32(ch2(t)1)32dt=1αargch(aα)argch(aα)sh(t)sh3(t)dt=2αargch(aα)argch(aα)dtch(2t)1=2αln(aκ+a2α1)ln(aα+a2α1dte2t+e2t21=4αln(aα+a2α1)ln(aα+a2α1)dte2t+e2t2...becontinued...

Commented by prof Abdo imad last updated on 26/May/18

let find K=∫       (dt/(e^(2t)  +e^(−2t)  −2))  chamgement  e^(2t)  =u give  K = ∫  (1/(u +u^(−1)  −2)) (du/(2u))  =(1/2) ∫      (du/(u^2  +1 −2u)) =(1/2)∫   (du/((u−1)^2 ))  = −(1/(2(u−1)))  =((−1)/(2(e^(2t)  −1))) +c so  f(λ) = −(4/(2α)) [  (1/(e^(2t) −1))]_(ln(((−a)/(√α)) +(√((a^2 /α)−1))) ^(ln( (a/(√α)) +(√((a^2 /α) −1)))   = ((−2)/α){     (1/(((a/(√α)) +(√((a^2 /α)−1))))) − (1/((−(a/(√α))+(√((a^2 /α) −1)))))  = (2/λ){     (1/(( (a/(√(−λ))) +(√(−(a^2 /λ)−1)))))−(1/((((−a)/(√(−λ)))+(√(−(a^2 /λ)−1)))))  with λ<0 .

letfindK=dte2t+e2t2chamgemente2t=ugiveK=1u+u12du2u=12duu2+12u=12du(u1)2=12(u1)=12(e2t1)+csof(λ)=42α[1e2t1]ln(aα+a2α1ln(aα+a2α1=2α{1(aα+a2α1)1(aα+a2α1)=2λ{1(aλ+a2λ1)1(aλ+a2λ1)withλ<0.

Answered by tanmay.chaudhury50@gmail.com last updated on 24/May/18

x=(√λ) tanθ   dx=(√λ) sec^2 θ dθ  I=∫(((√λ) sec^2 θ dθ)/({λ(1+tan^2 θ)}^(3/2) ))  ∫(1/λ) ×((sec^2 θ)/(sec^3 θ))×(dθ/)  =(1/λ)∫cosθ dθ  =(1/λ)sinθ  now putting the limit  =(1/λ)×∣(x/((λ+x^2 )^(1/2)  ))∣_(−a) ^a   =(1/λ)×((2a)/((λ+a^2 )^(1/2) ))

x=λtanθdx=λsec2θdθI=λsec2θdθ{λ(1+tan2θ)}321λ×sec2θsec3θ×dθ=1λcosθdθ=1λsinθnowputtingthelimit=1λ×x(λ+x2)12aa=1λ×2a(λ+a2)12

Commented by abdo.msup.com last updated on 25/May/18

your answer is correct sir Tanmay  but you must study the case λ<0....

youransweriscorrectsirTanmaybutyoumuststudythecaseλ<0....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com