Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 35851 by ajfour last updated on 24/May/18

Commented by ajfour last updated on 25/May/18

Q.35828 continuation..  Find electric potential at point   P(x_0 ,y_0 ,z_0 ) due to the charged  square wire frame.

$${Q}.\mathrm{35828}\:{continuation}.. \\ $$$${Find}\:{electric}\:{potential}\:{at}\:{point}\: \\ $$$${P}\left({x}_{\mathrm{0}} ,{y}_{\mathrm{0}} ,{z}_{\mathrm{0}} \right)\:{due}\:{to}\:{the}\:{charged} \\ $$$${square}\:{wire}\:{frame}. \\ $$

Answered by ajfour last updated on 25/May/18

Potential at P(x_0 ,y_0 ,z_0 ) due to  line charge AD is       dV=((λdz)/(4πε_0 r)) = ((λdz)/(4πε_0 (√(((l/2)−x_0 )^2 +y_0 ^2 +(z−z_0 )^2 ))))  let  p_⊥ ^2 =((l/2)−x_0 )^2 +y_0 ^2    ∫dV _(AD) = (λ/(4πε_0 ))∫_(−l/2) ^(  l/2) (dz/(√(p_⊥ ^2 +(z−z_0 )^2 )))  V_(AD)  =(λ/(4πε_0 ))ln ((((l/2)−z_0 +(√(p_⊥ ^2 +((l/2)−z_0 )^2 )))/(−(l/2)−z_0 +(√(p_⊥ ^2 +((l/2)+z_0 )^2 )))))    similarly  V_(BC)   = (λ/(4πε_0 ))∫_(−l/2) ^(  l/2) (dz/(√((x_0 +(l/2))^2 +y_0 ^2 +(z−z_0 )^2 )))  let q_⊥ ^2 =(x_0 +(l/2))^2 +y_0 ^2   V_(BC)  =(λ/(4πε_0 ))ln ((((l/2)−z_0 +(√(q_⊥ ^2 +((l/2)−z_0 )^2 )))/(−(l/2)−z_0 +(√(q_⊥ ^2 +((l/2)+z_0 )^2 )))))  similarly V_(AB)   and  V_(CD)  .  V_P  = V_(AB) +V_(BC) +V_(CD) +V_(AD)  .

$${Potential}\:{at}\:{P}\left({x}_{\mathrm{0}} ,{y}_{\mathrm{0}} ,{z}_{\mathrm{0}} \right)\:{due}\:{to} \\ $$$${line}\:{charge}\:{AD}\:{is} \\ $$$$\:\:\:\:\:{dV}=\frac{\lambda{dz}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} {r}}\:=\:\frac{\lambda{dz}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} \sqrt{\left(\frac{{l}}{\mathrm{2}}−{x}_{\mathrm{0}} \right)^{\mathrm{2}} +{y}_{\mathrm{0}} ^{\mathrm{2}} +\left({z}−{z}_{\mathrm{0}} \right)^{\mathrm{2}} }} \\ $$$${let}\:\:{p}_{\bot} ^{\mathrm{2}} =\left(\frac{{l}}{\mathrm{2}}−{x}_{\mathrm{0}} \right)^{\mathrm{2}} +{y}_{\mathrm{0}} ^{\mathrm{2}} \: \\ $$$$\int{dV}\:_{{AD}} =\:\frac{\lambda}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−{l}/\mathrm{2}} ^{\:\:{l}/\mathrm{2}} \frac{{dz}}{\sqrt{{p}_{\bot} ^{\mathrm{2}} +\left({z}−{z}_{\mathrm{0}} \right)^{\mathrm{2}} }} \\ $$$${V}_{{AD}} \:=\frac{\lambda}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\mathrm{ln}\:\left(\frac{\frac{{l}}{\mathrm{2}}−{z}_{\mathrm{0}} +\sqrt{{p}_{\bot} ^{\mathrm{2}} +\left(\frac{{l}}{\mathrm{2}}−{z}_{\mathrm{0}} \right)^{\mathrm{2}} }}{−\frac{{l}}{\mathrm{2}}−{z}_{\mathrm{0}} +\sqrt{{p}_{\bot} ^{\mathrm{2}} +\left(\frac{{l}}{\mathrm{2}}+{z}_{\mathrm{0}} \right)^{\mathrm{2}} }}\right) \\ $$$$\:\:{similarly} \\ $$$${V}_{{BC}} \:\:=\:\frac{\lambda}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−{l}/\mathrm{2}} ^{\:\:{l}/\mathrm{2}} \frac{{dz}}{\sqrt{\left({x}_{\mathrm{0}} +\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}_{\mathrm{0}} ^{\mathrm{2}} +\left({z}−{z}_{\mathrm{0}} \right)^{\mathrm{2}} }} \\ $$$${let}\:{q}_{\bot} ^{\mathrm{2}} =\left({x}_{\mathrm{0}} +\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$${V}_{{BC}} \:=\frac{\lambda}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\mathrm{ln}\:\left(\frac{\frac{{l}}{\mathrm{2}}−{z}_{\mathrm{0}} +\sqrt{{q}_{\bot} ^{\mathrm{2}} +\left(\frac{{l}}{\mathrm{2}}−{z}_{\mathrm{0}} \right)^{\mathrm{2}} }}{−\frac{{l}}{\mathrm{2}}−{z}_{\mathrm{0}} +\sqrt{{q}_{\bot} ^{\mathrm{2}} +\left(\frac{{l}}{\mathrm{2}}+{z}_{\mathrm{0}} \right)^{\mathrm{2}} }}\right) \\ $$$${similarly}\:{V}_{{AB}} \:\:{and}\:\:{V}_{{CD}} \:. \\ $$$${V}_{{P}} \:=\:{V}_{{AB}} +{V}_{{BC}} +{V}_{{CD}} +{V}_{{AD}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com