Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 35895 by ajfour last updated on 25/May/18

Commented by ajfour last updated on 25/May/18

Find the electric field due to a  uniformly charged equilateral  triangular plate (of charge   density σ) on the y axis at a   distance y from origin (the  centroid of plate).

$${Find}\:{the}\:{electric}\:{field}\:{due}\:{to}\:{a} \\ $$$${uniformly}\:{charged}\:{equilateral} \\ $$$${triangular}\:{plate}\:\left({of}\:{charge}\:\right. \\ $$$$\left.{density}\:\sigma\right)\:{on}\:{the}\:{y}\:{axis}\:{at}\:{a}\: \\ $$$${distance}\:{y}\:{from}\:{origin}\:\left({the}\right. \\ $$$$\left.{centroid}\:{of}\:{plate}\right). \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/May/18

the elementary area as per figure is dxdz  for sign convenience let cosider the position  cooridinate is (x,z)  electric field at a distance y as per figure is  dE=(1/(4Πε_0 ))×((σdxdy)/(x^2 +y^2 +z^2 ))  now to find limit of x and z  centroid devide height of the triangle in2:1  so deviding (((√3) a)/(2 )) in 2:1 ratio we get the limit  of z    upper limit=(2/3)×(((√3) a)/2), lower=(1/3)×(((√3) a)/2)  Z_(up) =(a/(√3))  Z_(low) =(a/(2(√3))) limit of z from(a/((√3) )) to(−(a/(2(√3)))  now to find limit of x     (2/3)=(x/(a/2))  x=(a/3)  limit of x is from −(a_ /3)to +(a/3)  E=(1/(4Πε_0 ))×∫_(−(a/3)) ^(a/3) ∫_(−(a/(2(√3)))) ^(+(a/(√3))) ((σdxdz)/(x^2 +y^2 +z^2 ))   give me time....

$${the}\:{elementary}\:{area}\:{as}\:{per}\:{figure}\:{is}\:{dxdz} \\ $$$${for}\:{sign}\:{convenience}\:{let}\:{cosider}\:{the}\:{position} \\ $$$${cooridinate}\:{is}\:\left({x},{z}\right) \\ $$$${electric}\:{field}\:{at}\:{a}\:{distance}\:{y}\:{as}\:{per}\:{figure}\:{is} \\ $$$${dE}=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\sigma{dxdy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$${now}\:{to}\:{find}\:{limit}\:{of}\:{x}\:{and}\:{z} \\ $$$${centroid}\:{devide}\:{height}\:{of}\:{the}\:{triangle}\:{in}\mathrm{2}:\mathrm{1} \\ $$$${so}\:{deviding}\:\frac{\sqrt{\mathrm{3}}\:{a}}{\mathrm{2}\:}\:{in}\:\mathrm{2}:\mathrm{1}\:{ratio}\:{we}\:{get}\:{the}\:{limit} \\ $$$${of}\:{z}\:\:\:\:{upper}\:{limit}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}\:{a}}{\mathrm{2}},\:{lower}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}\:{a}}{\mathrm{2}} \\ $$$${Z}_{{up}} =\frac{{a}}{\sqrt{\mathrm{3}}}\:\:{Z}_{{low}} =\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\:{limit}\:{of}\:{z}\:{from}\frac{{a}}{\sqrt{\mathrm{3}}\:}\:{to}\left(−\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\right. \\ $$$${now}\:{to}\:{find}\:{limit}\:{of}\:{x}\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}}=\frac{{x}}{\frac{{a}}{\mathrm{2}}} \\ $$$${x}=\frac{{a}}{\mathrm{3}}\:\:{limit}\:{of}\:{x}\:{is}\:{from}\:−\frac{{a}_{} }{\mathrm{3}}{to}\:+\frac{{a}}{\mathrm{3}} \\ $$$${E}=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\int_{−\frac{{a}}{\mathrm{3}}} ^{\frac{{a}}{\mathrm{3}}} \int_{−\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}} ^{+\frac{{a}}{\sqrt{\mathrm{3}}}} \frac{\sigma{dxdz}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\: \\ $$$${give}\:{me}\:{time}.... \\ $$$$ \\ $$

Commented by ajfour last updated on 25/May/18

not okay, you are in error..

$${not}\:{okay},\:{you}\:{are}\:{in}\:{error}.. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 25/May/18

true

$${true}\: \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 25/May/18

why you have taken dEcosθ  is there any        symetry to cancell the dEsinθ component...

$${why}\:{you}\:{have}\:{taken}\:{dEcos}\theta\:\:{is}\:{there}\:{any}\: \\ $$$$\:\:\:\:\:{symetry}\:{to}\:{cancell}\:{the}\:{dEsin}\theta\:{component}... \\ $$

Commented by ajfour last updated on 25/May/18

there is such a symmetry.

$${there}\:{is}\:{such}\:{a}\:{symmetry}. \\ $$

Answered by ajfour last updated on 25/May/18

dE=(1/(4πε_0 ))(((σdxdz)/(x^2 +y^2 +z^2 )))  E∣_((0,y,0)) =∫∫dEcos θ  =(1/(4πε_0 )) ∫_(−(a/2)) ^(  (a/2)) [∫_(−(a/(2(√3)))) ^(  ((2/3)×(a/2)−x)(√3)) ((σydz)/((x^2 +y^2 +z^2 )^(3/2) ))]dx  let z=(√(x^2 +y^2 )) tan φ        dz=(√(x^2 +y^2 )) sec^2 φdφ  E=((σy)/(4πε_0 ))∫_(−(a/2)) ^(  (a/2)) [∫((√(x^2 +y^2 ))/((x^2 +y^2 )^(3/2) sec^3 φ))sec^2 φdφ]dx  E=((σy)/(4πε_0 ))∫_(−(a/2)) ^(  (a/2)) [∫((cos φdφ)/((x^2 +y^2 )))]dx    =((σy)/(4πε_0 ))∫_(−(a/2)) ^(  (a/2)) (1/((x^2 +y^2 )))[(z/(√(x^2 +y^2 +z^2 )))]_(−(a/(2(√3)))) ^(((a/3)−x)(√3)) dx   =((σy)/(4πε_0 ))∫_(−(a/2)) ^(  (a/2)) (1/((x^2 +y^2 )))[((((a/3)−x)(√3))/(√(x^2 +y^2 +3((a/3)−x)^2 )))+((((a/(2(√3)))))/(√(x^2 +y^2 +(a^2 /(12)))))]dx   =((σy)/(4πε_0 ))∫_(−(a/2)) ^(  (a/2)) [((((a/3)−x)(√3))/((x^2 +y^2 )(√(4x^2 −2ax+(a^2 /3)+y^2 ))))+(a/(2(√3)))×(1/((x^2 +y^2 )(√(x^2 +y^2 +(a^2 /(12))))))]dx   =((σy)/(4πε_0 ))∫_(−(a/2)) ^(  (a/2)) [((((a/3)−x)(√3))/((x^2 +y^2 )(√((2x−(a/2))^2 +(a^2 /(12))+y^2 ))))+(a/(2(√3)))×(1/((x^2 +y^2 )(√(x^2 +y^2 +(a^2 /(12))))))]dx  .....

$${dE}=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\left(\frac{\sigma{dxdz}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\right) \\ $$$${E}\mid_{\left(\mathrm{0},{y},\mathrm{0}\right)} =\int\int{dE}\mathrm{cos}\:\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\:\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\int_{−\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}} ^{\:\:\left(\frac{\mathrm{2}}{\mathrm{3}}×\frac{{a}}{\mathrm{2}}−{x}\right)\sqrt{\mathrm{3}}} \frac{\sigma{ydz}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\right]{dx} \\ $$$${let}\:{z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\mathrm{tan}\:\phi \\ $$$$\:\:\:\:\:\:{dz}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\mathrm{sec}\:^{\mathrm{2}} \phi{d}\phi \\ $$$${E}=\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\int\frac{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} \mathrm{sec}\:^{\mathrm{3}} \phi}\mathrm{sec}\:^{\mathrm{2}} \phi{d}\phi\right]{dx} \\ $$$${E}=\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\int\frac{\mathrm{cos}\:\phi{d}\phi}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\right]{dx} \\ $$$$\:\:=\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\left[\frac{{z}}{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right]_{−\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}} ^{\left(\frac{{a}}{\mathrm{3}}−{x}\right)\sqrt{\mathrm{3}}} {dx} \\ $$$$\:=\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\left[\frac{\left(\frac{{a}}{\mathrm{3}}−{x}\right)\sqrt{\mathrm{3}}}{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}\left(\frac{{a}}{\mathrm{3}}−{x}\right)^{\mathrm{2}} }}+\frac{\left(\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\right)}{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{\mathrm{12}}}}\right]{dx} \\ $$$$\:=\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\frac{\left(\frac{{a}}{\mathrm{3}}−{x}\right)\sqrt{\mathrm{3}}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{ax}+\frac{{a}^{\mathrm{2}} }{\mathrm{3}}+{y}^{\mathrm{2}} }}+\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}×\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{\mathrm{12}}}}\right]{dx} \\ $$$$\:=\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{−\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\frac{\left(\frac{{a}}{\mathrm{3}}−{x}\right)\sqrt{\mathrm{3}}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\sqrt{\left(\mathrm{2}{x}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+{y}^{\mathrm{2}} }}+\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}×\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{\mathrm{12}}}}\right]{dx} \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com