Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35909 by ajfour last updated on 25/May/18

∫((7x−6)/((x^2 +25)(√((x−3)^2 +4)))) dx = ?

7x6(x2+25)(x3)2+4dx=?

Commented by tanmay.chaudhury50@gmail.com last updated on 26/May/18

this nut is hard to crack...i am fighting..hope  reach the destination to get it solved...

thisnutishardtocrack...iamfighting..hopereachthedestinationtogetitsolved...

Commented by rahul 19 last updated on 26/May/18

Yes sir !  If there is no ( 7x−6 ) in numerator  then it is cakewalk!

Yessir!Ifthereisno(7x6)innumeratorthenitiscakewalk!

Commented by prof Abdo imad last updated on 26/May/18

tbere is no cake ni chocolat in maths...

tbereisnocakenichocolatinmaths...

Commented by abdo mathsup 649 cc last updated on 27/May/18

changement x−3=2sht give   I = ∫  ((7(3+2sht)−6)/({ (2sht+3)^2  +25}2 cht)) 2chtdt  I = ∫    ((14sht  +15)/({4sh^2 t +12sht  +34)))dt  = ∫   ((14((e^t −e^(−t) )/2) +15)/(4 (((e^t  −e^(−t) )/2))^2  +12 ((e^t  −e^(−t) )/2) +34))dt  = ∫   ((7e^t  −7 e^(−t)  +15)/(e^(2t)  +e^(−2t) −2 +6 e^t  −6 e^(−t)  +34))dt  =∫   ((7e^t  −7 e^(−t)  +15)/(e^(2t)  +e^(−2t)   +6 e^t  −6 e^(−t)   +32))dt changement  e^t  =x give  I = ∫  ((7x−(7/x) +15)/(x^2  +(1/x^2 ) +6x −(6/x) +32)) (dx/x)  = ∫    ((7x^2  +15x −7)/(x^4    +1 +6x^3  −6x +32x^2 ))dx  = ∫   ((7x^2  +15x −7)/(x^4  +6x^3  +32x^2  −6x +1))dx the roots of  polynom p(x)= x^4  +6x^3  +32 x^2  −6x +1 are  the complex  z_1  ∼ −3,093+4,853 i  z_2 ∼−3,093 −4,853 i =z_1 ^−   z_3  ∼ 0,093 +0,146 i  z_4  ∼0,093 −0,146 i= z_3 ^−   p(x) ∼ (z−_ z_1 )(x−z_1 ^− )(x−z_2 )(x −z_2 ^− )  ∼ (x^2   +2.3,093x+(√((3,093)^2  +(4,853)^2 ))).  ( x^2    +2.0,093 x +(√((0,093)^2  +(0,146)^2 )))   the value of this integral is obtained  after  decomposing the fraction  F(x) = ((7x^2  +15x −7)/(p(x))) at form  F(x) = ((ax+b)/(x^2  −2Re(z_1 )x +∣z_1 ∣^2 )) + ((cx+d)/(x^2  −2Re(z_2 )x +∣z_2 ∣^( ))  ....

changementx3=2shtgiveI=7(3+2sht)6{(2sht+3)2+25}2cht2chtdtI=14sht+15{4sh2t+12sht+34)dt=14etet2+154(etet2)2+12etet2+34dt=7et7et+15e2t+e2t2+6et6et+34dt=7et7et+15e2t+e2t+6et6et+32dtchangementet=xgiveI=7x7x+15x2+1x2+6x6x+32dxx=7x2+15x7x4+1+6x36x+32x2dx=7x2+15x7x4+6x3+32x26x+1dxtherootsofpolynomp(x)=x4+6x3+32x26x+1arethecomplexz13,093+4,853iz23,0934,853i=z1z30,093+0,146iz40,0930,146i=z3p(x)(zz1)(xz1)(xz2)(xz2)(x2+2.3,093x+(3,093)2+(4,853)2).(x2+2.0,093x+(0,093)2+(0,146)2)thevalueofthisintegralisobtainedafterdecomposingthefractionF(x)=7x2+15x7p(x)atformF(x)=ax+bx22Re(z1)x+z12+cx+dx22Re(z2)x+z2(....

Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18

    ∫((7x−6)/((x^2 +25)(√(x^2 −6x+13))))dx  let t^2 =((x^2 −6x+13)/(x^2 +25))  2lnt=ln(x^2 −6x+13)−ln(x^2 +25)  (2/t)dt={((2x−6)/((x^2 −6x+13)))−((2x)/(x^2 +25))}dx    (2/t)dt=((2x^3 +50x−6x^2 −150−2x^3 +12x^2 −26x)/((x^2 +25)(x^2 −6x+13)))dx       (2/t)dt=((6x^2 +24x−150)/((x^2 +25)(x^2 −6x+13)))dx  dx=(2/t)×(((x^2 +25)(x^2 −6x+13))/(6(x^2 +4x−25)))dt  ∫((7x−6)/((x^2 +25)(√(x^2 −6x+13))))(2/t)×(((x^2 +25)(x^2 −6x+13)/(6(x^2 +4x−25)))  contd puting value of t  ∫((7x−6)/((x^2 +25)(√(x^2 −6x+13))))×((2(√(x^2 +25)))/(√(x^2 −6x+13)))×  (((x^2 +25)(x^2 −6x+13))/(6(x^2 +4x−25)))dx  (1/3)∫(((7x−6)(√(x^2 +25)))/(x^2 +4x−25))dx  contd

7x6(x2+25)x26x+13dxlett2=x26x+13x2+252lnt=ln(x26x+13)ln(x2+25)2tdt={2x6(x26x+13)2xx2+25}dx2tdt=2x3+50x6x21502x3+12x226x(x2+25)(x26x+13)dx2tdt=6x2+24x150(x2+25)(x26x+13)dxdx=2t×(x2+25)(x26x+13)6(x2+4x25)dt7x6(x2+25)x26x+132t×(x2+25)(x26x+136(x2+4x25)contdputingvalueoft7x6(x2+25)x26x+13×2x2+25x26x+13×(x2+25)(x26x+13)6(x2+4x25)dx13(7x6)x2+25x2+4x25dxcontd

Commented by ajfour last updated on 26/May/18

thanks for the attempt sir.

thanksfortheattemptsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com