All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35920 by rahul 19 last updated on 25/May/18
∫e2x+12ex−1dx=?
Commented by prof Abdo imad last updated on 26/May/18
changementex=tgiveI=∫t2+12t−1dtt=∫t2+12t2−tdt=12∫2t2+2−t+t2t2−tdt=t2+12∫2+t2t2−tdtletdecomposeF(t)=2+tt(2t−1)=at+bt+c2t−1⇔2at−a+bt2+ct=2+t⇔bt2+(2a+c)t−a=2+t⇒b=0,a=−2,2a+c=1⇒c=1−2(−2)=5F(t)=−2t+52t−1∫2+t2t2−tdt=−2ln∣t∣+52ln∣t−12∣+c⇒I=t2−ln∣t∣+54ln∣t−12∣+c⇒I=ex2−x+54ln∣ex−12∣+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18
t=2ex−1ex=t+12soexdx=12dtdx=12×2t+1×dt∫(t+12)2+1t×dtt+1∫t2+2t+1+44t(t+1)dt14∫t2+2t+5t(t+1)dtdevidingt2+2t+5byt2+t14∫{1+t+5t2+t}dt14∫tdt+18∫2t+1+9t2+tdt14∫dt+18∫2t+1t2+tdt+98∫dtt(t+1)14∫dt+18∫2t+1t2+1dt+98∫t+1−tt(t+1)dt14∫dt+18∫2t+1t2+tdt+98∫dtt−98∫dtt+114t+18ln(t2+t)+98lnt−98ln(t+1)14(2ex−1)+18ln{(2ex−1)2+(2ex−1}−98ln(2ex−1+1)14(2ex−1)+18ln(4e2x−4ex+1+2ex−1)−98{ln2+x}14(2ex−1)+18ln(4e2x−2ex)+9x8+constant14(2ex−1)+18{ln2ex(2ex−1)}+9x8+C=14(2ex−1)+18{ln2+x+ln(2ex−1)}+9x8+C=14(2ex−1)+ln28+x8+18ln(2ex−1)+9x8+C=14(2ex−1)+10x8+18ln(2ex−1)+C′ans
Terms of Service
Privacy Policy
Contact: info@tinkutara.com