Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 35940 by ajfour last updated on 26/May/18

Commented by ajfour last updated on 26/May/18

Find electric field at P due to a  a charged rectangular plate of  surface charge density 𝛔.

$${Find}\:{electric}\:{field}\:{at}\:\boldsymbol{{P}}\:{due}\:{to}\:{a} \\ $$$${a}\:{charged}\:{rectangular}\:{plate}\:{of} \\ $$$${surface}\:{charge}\:{density}\:\boldsymbol{\sigma}. \\ $$

Answered by ajfour last updated on 26/May/18

dEcos ΞΈ=((Οƒydxdy)/(4πΡ_0 r^3 ))  E_P =((Οƒy)/(4πΡ_0 ))∫_(βˆ’(a/2)) ^(  (a/2)) [∫_(βˆ’(b/2)) ^(  (b/2)) (dz/((x^2 +y^2 +z^2 )^(3/2) ))]dx      let z=(√(x^2 +y^2 )) tan Ο†  E_P =((Οƒy)/(4πΡ_0 ))∫_(βˆ’(a/2)) ^(  (a/2)) [∫_(βˆ’Ο†_0 ) ^(  Ο†_0 ) (((√(x^2 +y^2 )) sec^2 Ο†dΟ†)/((√(x^2 +y^2 )) (x^2 +y^2 )sec^3 Ο†))]dx  E_P =((Οƒy)/(4πΡ_0 ))∫_(βˆ’(a/2)) ^(  (a/2)) ((2sin Ο†_0 )/(x^2 +y^2 )) dx  E_P =((Οƒy)/(4πΡ_0 ))∫_(βˆ’(a/2)) ^(  (a/2)) (b/((x^2 +y^2 )(√(x^2 +y^2 +(b^2 /4))))) dx     now  let  (√(x^2 +y^2 )) =(b/2)cot ψ  ; β‡’  2xdx=(b^2 /4)(2cot ψ)(βˆ’cosec^2 ψ)dψ  E_P =((2Οƒyb)/(4πΡ_0 ))∫_ψ_0  ^(  ψ_1 ) ((βˆ’(b^2 /4)cosec^3 ψ cos ψ dψ)/(x((b^2 /4)cot^2 ψ)((b/2)cosec ψ))) dx      E_P  =βˆ’((Οƒy)/(πΡ_0 ))∫_ψ_0  ^(  ψ_1 ) ((sec ψ)/(√((b^2 /4)cot^2 Οˆβˆ’y^2 )))dψ  As  cot ψ_1 =((√((a^2 /4)+y^2 ))/(b/2)) ; cot ψ_0 =(y/(b/2))  β‡’ E_P =((Οƒy)/(πΡ_0 ))∫_ψ_1  ^(  ψ_0 ) ((sec ψtan ψ)/(√((b^2 /4)βˆ’y^2 tan^2 ψ))) dψ  let  sec ψ = t  E_P =(Οƒ/(πΡ_0 ))∫_ψ_1  ^(  ψ_0 ) ((d(ysec ψ))/(√((b^2 /4)+y^2 βˆ’y^2 sec^2 ψ)))  E_P =(Οƒ/(πΡ_0 ))sin^(βˆ’1) (((ysec ψ)/(√((b^2 /4)+y^2 ))))∣_ψ_1  ^ψ_0    E_P =(Οƒ/(πΡ_0 ))[sin^(βˆ’1) (cos ψ_0 sec ψ_0 )βˆ’sin^(βˆ’1) ( (y/(√((b^2 /4)+y^2 ))).((√((a^2 /4)+(b^2 /4)+y^2 ))/(√((a^2 /4)+y^2 ))))]  E_P =(Οƒ/(2Ξ΅_0 ))[1βˆ’(2/Ο€)sin^(βˆ’1) ( (y/(√((b^2 /4)+y^2 ))).((√((a^2 /4)+(b^2 /4)+y^2 ))/(√((a^2 /4)+y^2 ))))]   β–    (correct eventually, thanks            to tanmay sir).

$${dE}\mathrm{cos}\:\theta=\frac{\sigma{ydxdy}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} {r}^{\mathrm{3}} } \\ $$$${E}_{{P}} =\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{βˆ’\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\int_{βˆ’\frac{{b}}{\mathrm{2}}} ^{\:\:\frac{{b}}{\mathrm{2}}} \frac{{dz}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\right]{dx} \\ $$$$\:\:\:\:{let}\:{z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\mathrm{tan}\:\phi \\ $$$${E}_{{P}} =\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{βˆ’\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \left[\int_{βˆ’\phi_{\mathrm{0}} } ^{\:\:\phi_{\mathrm{0}} } \frac{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\mathrm{sec}\:^{\mathrm{2}} \phi{d}\phi}{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\mathrm{sec}\:^{\mathrm{3}} \phi}\right]{dx} \\ $$$${E}_{{P}} =\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{βˆ’\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \frac{\mathrm{2sin}\:\phi_{\mathrm{0}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:{dx} \\ $$$${E}_{{P}} =\frac{\sigma{y}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{βˆ’\frac{{a}}{\mathrm{2}}} ^{\:\:\frac{{a}}{\mathrm{2}}} \frac{{b}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{\mathrm{4}}}}\:{dx} \\ $$$$\:\:\:{now}\:\:{let}\:\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:=\frac{{b}}{\mathrm{2}}\mathrm{cot}\:\psi\:\:;\:\Rightarrow \\ $$$$\mathrm{2}{xdx}=\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{2cot}\:\psi\right)\left(βˆ’\mathrm{cosec}\:^{\mathrm{2}} \psi\right){d}\psi \\ $$$${E}_{{P}} =\frac{\mathrm{2}\sigma{yb}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{\psi_{\mathrm{0}} } ^{\:\:\psi_{\mathrm{1}} } \frac{βˆ’\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\mathrm{cosec}\:^{\mathrm{3}} \psi\:\mathrm{cos}\:\psi\:{d}\psi}{{x}\left(\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\mathrm{cot}\:^{\mathrm{2}} \psi\right)\left(\frac{{b}}{\mathrm{2}}\mathrm{cosec}\:\psi\right)}\:{dx} \\ $$$$\:\:\:\:{E}_{{P}} \:=βˆ’\frac{\sigma{y}}{\pi\epsilon_{\mathrm{0}} }\int_{\psi_{\mathrm{0}} } ^{\:\:\psi_{\mathrm{1}} } \frac{\mathrm{sec}\:\psi}{\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\mathrm{cot}\:^{\mathrm{2}} \psiβˆ’{y}^{\mathrm{2}} }}{d}\psi \\ $$$${As}\:\:\mathrm{cot}\:\psi_{\mathrm{1}} =\frac{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}{{b}/\mathrm{2}}\:;\:\mathrm{cot}\:\psi_{\mathrm{0}} =\frac{{y}}{{b}/\mathrm{2}} \\ $$$$\Rightarrow\:{E}_{{P}} =\frac{\sigma{y}}{\pi\epsilon_{\mathrm{0}} }\int_{\psi_{\mathrm{1}} } ^{\:\:\psi_{\mathrm{0}} } \frac{\mathrm{sec}\:\psi\mathrm{tan}\:\psi}{\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{4}}βˆ’{y}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \psi}}\:{d}\psi \\ $$$${let}\:\:\mathrm{sec}\:\psi\:=\:{t} \\ $$$${E}_{{P}} =\frac{\sigma}{\pi\epsilon_{\mathrm{0}} }\int_{\psi_{\mathrm{1}} } ^{\:\:\psi_{\mathrm{0}} } \frac{{d}\left({y}\mathrm{sec}\:\psi\right)}{\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} βˆ’{y}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{2}} \psi}} \\ $$$${E}_{{P}} =\frac{\sigma}{\pi\epsilon_{\mathrm{0}} }\mathrm{sin}^{βˆ’\mathrm{1}} \left(\frac{{y}\mathrm{sec}\:\psi}{\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}\right)\mid_{\psi_{\mathrm{1}} } ^{\psi_{\mathrm{0}} } \\ $$$${E}_{{P}} =\frac{\sigma}{\pi\epsilon_{\mathrm{0}} }\left[\mathrm{sin}^{βˆ’\mathrm{1}} \left(\mathrm{cos}\:\psi_{\mathrm{0}} \mathrm{sec}\:\psi_{\mathrm{0}} \right)βˆ’\mathrm{sin}^{βˆ’\mathrm{1}} \left(\:\frac{{y}}{\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}.\frac{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}\right)\right] \\ $$$${E}_{{P}} =\frac{\sigma}{\mathrm{2}\epsilon_{\mathrm{0}} }\left[\mathrm{1}βˆ’\frac{\mathrm{2}}{\pi}\mathrm{sin}^{βˆ’\mathrm{1}} \left(\:\frac{{y}}{\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}.\frac{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} }}\right)\right] \\ $$$$\:\blacksquare\:\:\:\left({correct}\:{eventually},\:{thanks}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:{to}\:{tanmay}\:{sir}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com