Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35960 by Joel579 last updated on 26/May/18

Solve using Residue Theorem  I = ∫_(−∞) ^(+∞)  (x^2 /(x^4  + 16)) dx

$$\mathrm{Solve}\:\mathrm{using}\:\mathrm{Residue}\:\mathrm{Theorem} \\ $$$$\mathrm{I}\:=\:\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:+\:\mathrm{16}}\:{dx} \\ $$

Commented by abdo mathsup 649 cc last updated on 26/May/18

let consider the complex functionϕ(z)=(z^2 /(z^4  +16))  ϕ(z)= (z^2 /((z^2 −4i)(z^2  +4i)))   = (z^2 /((z −2(√i))(z +2(√i))( z −2(√(−i)))(z+2(√(−i)))))  ϕ(z) = (z^2 /((z −2e^(i(π/4)) )(z+2e^(i(π/4)) )(z −2 e^(−i(π/4)) )( z+2 e^(−i(π/4)) )))  the poles of ϕ are 2 e^(i(π/4))  , −2 e^(i(π/4))   , 2 e^(−i(π/4)) , −2 e^(−i(π/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res( ϕ, 2 e^(i(π/4)) ) +Res( ϕ,−2e^(−i(π/4)) )}  Res(ϕ, 2 e^(i(π/4)) ) = lim_(z→2e^(i(π/4)) )    (z −2e^(i(π/4)) )ϕ(z)  =   ((4 e^(i(π/2)) )/(4 e^(i(π/4))  ( 4i +4i))) = ((4i)/(4 e^(i(π/4))  (8i))) =  (1/8)e^(−i(π/4))   Res(ϕ ,−2 e^(−i(π/4)) ) = lim_(z→ −2e^(−i(π/4)) )   (z+e^(−i(π/4)) )ϕ(z)  =  ((4 e^(−i(π/2)) )/(−4 e^(−i(π/4)) ( 4 e^(−i(π/4)) −4i)))  = ((−4i)/(−4 e^(−i(π/4)) (−8i))) = −(1/8) e^(i(π/4))   ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ (1/8)( e^(−i(π/4))  −e^(i(π/4)) )}  =((−iπ)/4){ e^(i(π/4))  −e^(−i(π/4))  } = ((−iπ)/4){2isin((π/4))}  = (π/2) ((√2)/2) = ((π(√2))/4)  so  I  = ((π(√2))/4)  .

$${let}\:{consider}\:{the}\:{complex}\:{function}\varphi\left({z}\right)=\frac{{z}^{\mathrm{2}} }{{z}^{\mathrm{4}} \:+\mathrm{16}} \\ $$$$\varphi\left({z}\right)=\:\frac{{z}^{\mathrm{2}} }{\left({z}^{\mathrm{2}} −\mathrm{4}{i}\right)\left({z}^{\mathrm{2}} \:+\mathrm{4}{i}\right)}\: \\ $$$$=\:\frac{{z}^{\mathrm{2}} }{\left({z}\:−\mathrm{2}\sqrt{{i}}\right)\left({z}\:+\mathrm{2}\sqrt{{i}}\right)\left(\:{z}\:−\mathrm{2}\sqrt{−{i}}\right)\left({z}+\mathrm{2}\sqrt{−{i}}\right)} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} }{\left({z}\:−\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\left({z}+\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\left({z}\:−\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\left(\:{z}+\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\mathrm{2}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:,\:−\mathrm{2}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:,\:\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} ,\:−\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\:\varphi,\:\mathrm{2}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\:+{Res}\left(\:\varphi,−\mathrm{2}{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\right\} \\ $$$${Res}\left(\varphi,\:\mathrm{2}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\:=\:{lim}_{{z}\rightarrow\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{4}}} } \:\:\:\left({z}\:−\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\varphi\left({z}\right) \\ $$$$=\:\:\:\frac{\mathrm{4}\:{e}^{{i}\frac{\pi}{\mathrm{2}}} }{\mathrm{4}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\left(\:\mathrm{4}{i}\:+\mathrm{4}{i}\right)}\:=\:\frac{\mathrm{4}{i}}{\mathrm{4}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\left(\mathrm{8}{i}\right)}\:=\:\:\frac{\mathrm{1}}{\mathrm{8}}{e}^{−{i}\frac{\pi}{\mathrm{4}}} \\ $$$${Res}\left(\varphi\:,−\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\:=\:{lim}_{{z}\rightarrow\:−\mathrm{2}{e}^{−{i}\frac{\pi}{\mathrm{4}}} } \:\:\left({z}+{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\varphi\left({z}\right) \\ $$$$=\:\:\frac{\mathrm{4}\:{e}^{−{i}\frac{\pi}{\mathrm{2}}} }{−\mathrm{4}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \left(\:\mathrm{4}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} −\mathrm{4}{i}\right)} \\ $$$$=\:\frac{−\mathrm{4}{i}}{−\mathrm{4}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \left(−\mathrm{8}{i}\right)}\:=\:−\frac{\mathrm{1}}{\mathrm{8}}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\frac{\mathrm{1}}{\mathrm{8}}\left(\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:−{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\right\} \\ $$$$=\frac{−{i}\pi}{\mathrm{4}}\left\{\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:−{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:\right\}\:=\:\frac{−{i}\pi}{\mathrm{4}}\left\{\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{4}}\right)\right\} \\ $$$$=\:\frac{\pi}{\mathrm{2}}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:\:{so}\:\:{I}\:\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:\:. \\ $$

Commented by Joel579 last updated on 26/May/18

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Commented by abdo mathsup 649 cc last updated on 26/May/18

nevermind sir joel.

$${nevermind}\:{sir}\:{joel}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com