Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35983 by abdo mathsup 649 cc last updated on 26/May/18

calculate  ∫_0 ^∞      ((2(√t) +1)/(t^5    +3))dt  .

calculate02t+1t5+3dt.

Commented by prof Abdo imad last updated on 27/May/18

let put I = ∫_0 ^∞    ((2(√t) +1)/(t^5  +3))dt changement (√t) =x  give I = ∫_0 ^∞    ((2x +1)/(x^(10)  +3))2xdx = 4 ∫_0 ^∞  (x^2 /(x^(10)  +3))dx   +2∫_0 ^∞    (x/(x^(10)  +3))dx   but changement x=3^(1/(10))  u give  ∫_0 ^∞    (x^2 /(x^(10)  +3))dx = ∫_0 ^∞   ((3^(1/5)  u^2 )/(3u^(10)  +3)) 3^(1/(10))  du  = (3^(3/(10)) /3) ∫_0 ^∞    (u^2 /(1+u^(10) ))du  then we use the chang.   u^(10)  =t ⇒u=t^(1/(10))  ⇒ ∫_0 ^∞   (u^2 /(1+u^(10) ))du   =∫_0 ^∞    (t^(1/5) /(1+t)) (1/(10))t^((1/(10))−1) dt =(1/(10))∫_0 ^∞   (t^((3/(10))−1) /(1+t))dt  =(1/(10)) (π/(sin(((3π)/(10)))))   by the same chang. we get  ∫_0 ^∞     (x/(x^(10)  +3))dx = ∫_0 ^∞   ((3^(1/(10))  u)/(3u^(10)  +3)) 3^(1/(10))  du  =(3^(1/5) /3) ∫_0 ^∞     ((u du)/(1+u^(10) ))  =3^((−4)/5)   ∫_0 ^∞    (t^(1/(10)) /(1+t)) (1/(10)) t^((1/(10))−1)  dt  = (3^(−(4/5)) /(10)) ∫_0 ^∞    (t^((2/5)−1) /(1+t))dt = (3^(−(4/5)) /(10)) (π/(sin(((2π)/5)))) ⇒  I =(4/(10)) (π/(sin(((3π)/(10))))).(3^(3/(10)) /3)  + 2 (3^(−(4/5)) /(10)) (π/(sin(((2π)/5))))  I = ((2π)/5) 3^(−(7/(10)))     (1/(sin(((3π)/(10)))))  +(π/5) 3^(−(4/5))  .(1/(sin(((2π)/5))))  I have used the formula   ∫_0 ^∞     (t^(a−1) /(1+t))dt  = (π/(sin(πa))) with 0<a<1 .

letputI=02t+1t5+3dtchangementt=xgiveI=02x+1x10+32xdx=40x2x10+3dx+20xx10+3dxbutchangementx=3110ugive0x2x10+3dx=0315u23u10+33110du=331030u21+u10duthenweusethechang.u10=tu=t1100u21+u10du=0t151+t110t1101dt=1100t31011+tdt=110πsin(3π10)bythesamechang.weget0xx10+3dx=03110u3u10+33110du=31530udu1+u10=3450t1101+t110t1101dt=345100t2511+tdt=34510πsin(2π5)I=410πsin(3π10).33103+234510πsin(2π5)I=2π537101sin(3π10)+π5345.1sin(2π5)Ihaveusedtheformula0ta11+tdt=πsin(πa)with0<a<1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com