All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35983 by abdo mathsup 649 cc last updated on 26/May/18
calculate∫0∞2t+1t5+3dt.
Commented by prof Abdo imad last updated on 27/May/18
letputI=∫0∞2t+1t5+3dtchangementt=xgiveI=∫0∞2x+1x10+32xdx=4∫0∞x2x10+3dx+2∫0∞xx10+3dxbutchangementx=3110ugive∫0∞x2x10+3dx=∫0∞315u23u10+33110du=33103∫0∞u21+u10duthenweusethechang.u10=t⇒u=t110⇒∫0∞u21+u10du=∫0∞t151+t110t110−1dt=110∫0∞t310−11+tdt=110πsin(3π10)bythesamechang.weget∫0∞xx10+3dx=∫0∞3110u3u10+33110du=3153∫0∞udu1+u10=3−45∫0∞t1101+t110t110−1dt=3−4510∫0∞t25−11+tdt=3−4510πsin(2π5)⇒I=410πsin(3π10).33103+23−4510πsin(2π5)I=2π53−7101sin(3π10)+π53−45.1sin(2π5)Ihaveusedtheformula∫0∞ta−11+tdt=πsin(πa)with0<a<1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com