Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35986 by abdo mathsup 649 cc last updated on 26/May/18

let f(x)= (√(1 +n x^2 ))   −nx +3  with n integr  1) calculate lim_(x→+∞)  and lim_(x→−∞) f(x)  2) calculate f^′ (x)  3) give the equation of assymptote of f at  point  A(1,f(1)) .  4)calculate lim_(x→+∞)  ((f(x))/x) and lim_(x→−∞)   ((f(x))/x) .

$${let}\:{f}\left({x}\right)=\:\sqrt{\mathrm{1}\:+{n}\:{x}^{\mathrm{2}} }\:\:\:−{nx}\:+\mathrm{3}\:\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow+\infty} \:{and}\:{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{equation}\:{of}\:{assymptote}\:{of}\:{f}\:{at} \\ $$$${point}\:\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right)\:. \\ $$$$\left.\mathrm{4}\right){calculate}\:{lim}_{{x}\rightarrow+\infty} \:\frac{{f}\left({x}\right)}{{x}}\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\frac{{f}\left({x}\right)}{{x}}\:. \\ $$

Commented by prof Abdo imad last updated on 31/Aug/18

1)we have lim_(x→−∞) (−nx +3)=+∞ and  lim_(x→−∞) (√(1+nx^2 ))=+∞ ⇒lim_(x→−∞)    f(x) =+∞  for x>0  (√(1+nx^2 ))=(√(nx^2 (1+(1/(nx^2 )))))  =x(√n)(√(1+(1/(nx^2 )))) ∼x(√n){1+(1/(2nx^2 ))}=x(√n) +((√n)/(2nx))  =x(√n) +(1/(2x(√n))) (x→+∞) ⇒  f(x) ∼((√n)−n)x  +(1/(2x(√n))) −3 (x→+∞)⇒  f(x) ∼−(√n)((√n)−1)x ⇒lim_(x→+∞) f(x) =−∞

$$\left.\mathrm{1}\right){we}\:{have}\:{lim}_{{x}\rightarrow−\infty} \left(−{nx}\:+\mathrm{3}\right)=+\infty\:{and} \\ $$$${lim}_{{x}\rightarrow−\infty} \sqrt{\mathrm{1}+{nx}^{\mathrm{2}} }=+\infty\:\Rightarrow{lim}_{{x}\rightarrow−\infty} \:\:\:{f}\left({x}\right)\:=+\infty \\ $$$$\left.{for}\:{x}>\mathrm{0}\:\:\sqrt{\mathrm{1}+{nx}^{\mathrm{2}} }=\sqrt{{nx}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{nx}^{\mathrm{2}} }\right.}\right) \\ $$$$={x}\sqrt{{n}}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{nx}^{\mathrm{2}} }}\:\sim{x}\sqrt{{n}}\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{nx}^{\mathrm{2}} }\right\}={x}\sqrt{{n}}\:+\frac{\sqrt{{n}}}{\mathrm{2}{nx}} \\ $$$$={x}\sqrt{{n}}\:+\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{{n}}}\:\left({x}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${f}\left({x}\right)\:\sim\left(\sqrt{{n}}−{n}\right){x}\:\:+\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{{n}}}\:−\mathrm{3}\:\left({x}\rightarrow+\infty\right)\Rightarrow \\ $$$${f}\left({x}\right)\:\sim−\sqrt{{n}}\left(\sqrt{{n}}−\mathrm{1}\right){x}\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:=−\infty \\ $$$$ \\ $$

Commented by prof Abdo imad last updated on 31/Aug/18

2)∀x∈R     f^′ (x)=((2nx)/(2(√(1+nx^2 )))) −n  =  ((nx)/(√(1+nx^2 ))) −n =n{(x/(√(1+nx^2 ))) −1}.

$$\left.\mathrm{2}\right)\forall{x}\in{R}\:\:\:\:\:{f}^{'} \left({x}\right)=\frac{\mathrm{2}{nx}}{\mathrm{2}\sqrt{\mathrm{1}+{nx}^{\mathrm{2}} }}\:−{n} \\ $$$$=\:\:\frac{{nx}}{\sqrt{\mathrm{1}+{nx}^{\mathrm{2}} }}\:−{n}\:={n}\left\{\frac{{x}}{\sqrt{\mathrm{1}+{nx}^{\mathrm{2}} }}\:−\mathrm{1}\right\}. \\ $$

Commented by prof Abdo imad last updated on 31/Aug/18

3) we have f(1) =(√(1+n))−n+3  and  f^′ (x)= ((nx)/(√(1+nx^2 ))) −n ⇒f^′ (1)= (n/(√(1+n))) −n so the  equation of assymptote at point A is  y =f^′ (1)(x−1) +f(1) ⇒  y =((n/(√(1+n))) −n)(x−1) +(√(1+n)) −n +3 .

$$\left.\mathrm{3}\right)\:{we}\:{have}\:{f}\left(\mathrm{1}\right)\:=\sqrt{\mathrm{1}+{n}}−{n}+\mathrm{3}\:\:{and} \\ $$$${f}^{'} \left({x}\right)=\:\frac{{nx}}{\sqrt{\mathrm{1}+{nx}^{\mathrm{2}} }}\:−{n}\:\Rightarrow{f}^{'} \left(\mathrm{1}\right)=\:\frac{{n}}{\sqrt{\mathrm{1}+{n}}}\:−{n}\:{so}\:{the} \\ $$$${equation}\:{of}\:{assymptote}\:{at}\:{point}\:{A}\:{is} \\ $$$${y}\:={f}^{'} \left(\mathrm{1}\right)\left({x}−\mathrm{1}\right)\:+{f}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$${y}\:=\left(\frac{{n}}{\sqrt{\mathrm{1}+{n}}}\:−{n}\right)\left({x}−\mathrm{1}\right)\:+\sqrt{\mathrm{1}+{n}}\:−{n}\:+\mathrm{3}\:. \\ $$$$ \\ $$

Commented by prof Abdo imad last updated on 31/Aug/18

4) we have for x>0    ((f(x))/x) =(√((1+nx^2 )/x^2 )) −n +(3/x)  =(√(n+(1/x^2 )))−n+(3/x) ⇒lim_(x→+∞)   ((f(x))/x) =(√n)−n  for x<0   ((f(x))/x)  =−(√((1+nx^2 )/x^2 )) −n +(3/x)  =−(√(n+(1/x^2 ))) −n +(3/x) ⇒lim_(n→−∞)   ((f(x))/x) =−(√n)−n .

$$\left.\mathrm{4}\right)\:{we}\:{have}\:{for}\:{x}>\mathrm{0}\: \\ $$$$\:\frac{{f}\left({x}\right)}{{x}}\:=\sqrt{\frac{\mathrm{1}+{nx}^{\mathrm{2}} }{{x}^{\mathrm{2}} }}\:−{n}\:+\frac{\mathrm{3}}{{x}} \\ $$$$=\sqrt{{n}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}−{n}+\frac{\mathrm{3}}{{x}}\:\Rightarrow{lim}_{{x}\rightarrow+\infty} \:\:\frac{{f}\left({x}\right)}{{x}}\:=\sqrt{{n}}−{n} \\ $$$${for}\:{x}<\mathrm{0}\:\:\:\frac{{f}\left({x}\right)}{{x}}\:\:=−\sqrt{\frac{\mathrm{1}+{nx}^{\mathrm{2}} }{{x}^{\mathrm{2}} }}\:−{n}\:+\frac{\mathrm{3}}{{x}} \\ $$$$=−\sqrt{{n}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:−{n}\:+\frac{\mathrm{3}}{{x}}\:\Rightarrow{lim}_{{n}\rightarrow−\infty} \:\:\frac{{f}\left({x}\right)}{{x}}\:=−\sqrt{{n}}−{n}\:. \\ $$

Commented by maxmathsup by imad last updated on 31/Aug/18

3) forgive equation of tangente....

$$\left.\mathrm{3}\right)\:{forgive}\:{equation}\:{of}\:{tangente}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com