Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35987 by abdo mathsup 649 cc last updated on 26/May/18

let f(x) = (1/(1+x^3 ))  1) calculate f^((n)) (x)  2) developp f at integr serie.

letf(x)=11+x31)calculatef(n)(x)2)developpfatintegrserie.

Commented by prof Abdo imad last updated on 27/May/18

we have f(x)= (1/((x+1)(x^2  −x+1))) let decompose  f inside C[x] roots of x^2  −x +1  Δ=1−4=−3=(i(√3))^2  ⇒x_1  =((1 +i(√3))/2)  x_2  =((1−(√3))/2) or j =−(1/2) +i((√3)/2) ⇒x_2  =−j and  x_1  =−j^−   ⇒f(x)=(1/((x+1)(x+j)(x+j^− ))) =(a/(x+1)) +(b/(x+j))  +(c/(x+j^− ))  a =lim_(x→−1) (x+1)f(x)= (1/3)  b = lim_(x→−j) (x+j)f(x) = (1/((−j+1)(−j+j^− )))  = (1/((j−1)(j−j^− ))) =(1/((√3)(−(3/2)+i((√3)/2))))   = (2/(3( −(√3) +i))) = ((2( −(√3)−i))/(3(3 +1))) = ((−(√3)−i)/6)  c =lim_(x→−j^−  )  (x+j^− )f(x) = (1/((−j^−  +1)(j−j^− )))  = (1/((√3)( ((1+i(√3))/2) +1))) =  (1/((√3)( (3/2) +i((√3)/2))))  = (2/(3((√3) +i))) =((2((√3)−i))/(3(4))) = (((√3)−i)/6) ⇒  f(x) =  (1/(3(x+1)))   −(((√3)+i)/(6(x+j))) +(((√3)−i)/(6(x+j^− ))) ⇒  f^((n)) (x) = (1/3) (((−1)^n n!)/((x+1)^(n+1) )) −(((√3)+i)/6)  (((−1)^n n!)/((x+j)^(n+1) ))  + (((√3)−i)/6)  (((−1)^n n!)/((x+j^− )^(n+1) ))

wehavef(x)=1(x+1)(x2x+1)letdecomposefinsideC[x]rootsofx2x+1Δ=14=3=(i3)2x1=1+i32x2=132orj=12+i32x2=jandx1=jf(x)=1(x+1)(x+j)(x+j)=ax+1+bx+j+cx+ja=limx1(x+1)f(x)=13b=limxj(x+j)f(x)=1(j+1)(j+j)=1(j1)(jj)=13(32+i32)=23(3+i)=2(3i)3(3+1)=3i6c=limxj(x+j)f(x)=1(j+1)(jj)=13(1+i32+1)=13(32+i32)=23(3+i)=2(3i)3(4)=3i6f(x)=13(x+1)3+i6(x+j)+3i6(x+j)f(n)(x)=13(1)nn!(x+1)n+13+i6(1)nn!(x+j)n+1+3i6(1)nn!(x+j)n+1

Commented by prof Abdo imad last updated on 27/May/18

f^n (x) = (((−1)^n n!)/(3(x+1)^(n+1) ))  + (((−1)^n n!)/6){  (((√3)−i)/((x+j^− )^(n+1) ))  −(((√3)+i)/((x+j)^(n+1) ))}  f^((n)) (x) = (((−1)^n n!)/(3(x+1)^(n+1) )) +(((−1)^n n!)/6){ ((((√3)−i)/((x+j^− )^(n+1) )))  −conj( (((√3)−i)/((x+j^− )^(n+1) )))  = (((−1)^n n!)/(3(x+1)^(n+1) ))   +(((−1)^n n!)/3) Im( (((√3)−i)/((x +j^− )^(n+1) )))

fn(x)=(1)nn!3(x+1)n+1+(1)nn!6{3i(x+j)n+13+i(x+j)n+1}f(n)(x)=(1)nn!3(x+1)n+1+(1)nn!6{(3i(x+j)n+1)conj(3i(x+j)n+1)=(1)nn!3(x+1)n+1+(1)nn!3Im(3i(x+j)n+1)

Commented by prof Abdo imad last updated on 27/May/18

2) we have f(x) = Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   but   f^((n)) (0) = (((−1)^n n!)/3)  −(((√3)+i)/6)  (((−1)^n n!)/j^(n+1) )  +(((√3)−i)/6) (((−1)^n n!)/j^−^(n+1)  )  =(((−1)^n n!)/3)  + (((−1)^n n!)/6){   (((√3)−i)/j^−^(n+1)  )  −(((√3)+i)/j^(n+1) )}  =(((−1)^n n!)/3) +(((−1)^n n!)/6){((((√3)−i)j^(n+1)  −((√3)+i)j^−^(n+1)  )/1)}  = (((−1)^n n!)/3)   +(((−1)^n n!)/3) Im{ ((√3)−i)j^(n+1) }  but ((√3)−i)j^(n+1)  =2 (((√3)/2)−(1/2))(e^(i((2π)/3)) )^(n+1)   = 2 e^(−i(π/6))   e^(i(2/3)(n+1)π)   = 2 e^(i(  ((2(n+1)π)/3)−(π/6)))  ⇒

2)wehavef(x)=n=0f(n)(0)n!xnbutf(n)(0)=(1)nn!33+i6(1)nn!jn+1+3i6(1)nn!jn+1=(1)nn!3+(1)nn!6{3ijn+13+ijn+1}=(1)nn!3+(1)nn!6{(3i)jn+1(3+i)jn+11}=(1)nn!3+(1)nn!3Im{(3i)jn+1}but(3i)jn+1=2(3212)(ei2π3)n+1=2eiπ6ei23(n+1)π=2ei(2(n+1)π3π6)

Commented by abdo.msup.com last updated on 27/May/18

f^((n)) (0) = (((−1)^n n!)/3) +(2/3)(−1)^n n!sin(((2(n+1)π)/3)−(π/6))  ⇒f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n   =Σ_(n=0) ^∞  (((−1)^n )/3){ 1 +2sin(((2(n+1)π)/3) −(π/6))}x^n   another method   we have f(x) =(1/(1+x^3 )) so for ∣x∣<1  f(x) =Σ_(n=0) ^∞  (−1)^n  x^(3n)  .

f(n)(0)=(1)nn!3+23(1)nn!sin(2(n+1)π3π6)f(x)=n=0f(n)(0)n!xn=n=0(1)n3{1+2sin(2(n+1)π3π6)}xnanothermethodwehavef(x)=11+x3soforx∣<1f(x)=n=0(1)nx3n.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com