Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35988 by abdo mathsup 649 cc last updated on 26/May/18

let f(x) = ((x+2)/(x^3 −4x +3))  1) calculate f^((n)) (x)  2) developp f at integr serie.

letf(x)=x+2x34x+31)calculatef(n)(x)2)developpfatintegrserie.

Commented by abdo mathsup 649 cc last updated on 27/May/18

1) we have x^3 −4x +3 =x^3  −x −3x +3  =x(x^2 −1) −3(x−1) = (x−1)( x^2  +x −3) ⇒  f(x) = ((x+2)/((x−1)(x^2  +x−3))) = (a/(x−1)) +((bx +c)/(x^2  +x−3))  a=lim_(x→1) (x−1)f(x) = (3/(−1)) =−3  lim_(x→+∞) x f(x)=0 = a +b ⇒b=−a = 3 ⇒  f(x)  =  ((−3)/(x−1)) + ((3x+c)/(x^(2 )  +x −3))  f(0) = (2/3) = 3 −(c/3) ⇒2= 9 −c ⇒ c =7 ⇒  f(x) = ((−3)/(x−1))  +((3x+7)/(x^2  +x−3)) let find the roots of  x^2  +x−3   , Δ =1−4(−3) =13  x_(1 ) = ((−1+(√(13)))/2)  ,  x_2  = ((−1−(√(13)))/2) so  ((3x+7)/(x^2  +x−3)) = ((3x+7)/((x−x_1 )(x−x_2 )))  =((3(x−x_1 ) +3x_1  +7)/((x−x_1 )(x−x_2 ))) = (3/(x−x_2 )) + ((3x_(1 )  +7)/((x−x_1 )(x−x_2 )))   (3/(x−x_2 ))  +  ((3x_1 +7)/(x_1  −x_2 )) {  (1/(x−x_1 )) −(1/(x−x_2 ))} ⇒  f(x) = −(3/(x−1))  +(3/(x−x_2 ))  + (λ/(x−x_1 )) −(λ/(x−x_2 )) with  λ = ((3x_(1 )  +7)/(x_1  −x_2 )) ⇒   f^((n)) (x) = −3 (((−1)^n  n!)/((x−1)^(n+1) )) + (3−λ)(((−1)^n  n!)/((x−x_2 )^(n+1) ))  +λ  (((−1)^n n!)/((x−x_1 )^(n+1) ))

1)wehavex34x+3=x3x3x+3=x(x21)3(x1)=(x1)(x2+x3)f(x)=x+2(x1)(x2+x3)=ax1+bx+cx2+x3a=limx1(x1)f(x)=31=3limx+xf(x)=0=a+bb=a=3f(x)=3x1+3x+cx2+x3f(0)=23=3c32=9cc=7f(x)=3x1+3x+7x2+x3letfindtherootsofx2+x3,Δ=14(3)=13x1=1+132,x2=1132so3x+7x2+x3=3x+7(xx1)(xx2)=3(xx1)+3x1+7(xx1)(xx2)=3xx2+3x1+7(xx1)(xx2)3xx2+3x1+7x1x2{1xx11xx2}f(x)=3x1+3xx2+λxx1λxx2withλ=3x1+7x1x2f(n)(x)=3(1)nn!(x1)n+1+(3λ)(1)nn!(xx2)n+1+λ(1)nn!(xx1)n+1

Commented by abdo mathsup 649 cc last updated on 27/May/18

2)  we have f^((n)) (0) = 3n! +(3−λ) ((n!)/(−x_2 ^(n+1) ))  +λ  ((n!)/(−x_1 ^(n+1) ))  f^((n)) (0) = 3(n!)  +(λ −3) ((n!)/x_2 ^(n+1) )  −λ  ((n!)/x_1 ^(n+1) )  f(x) =Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   = Σ_(n=0) ^∞   (3  +((λ−3)/x_2 ^(n+1) )  −(λ/x_1 ^(n+1) )) x^n   .

2)wehavef(n)(0)=3n!+(3λ)n!x2n+1+λn!x1n+1f(n)(0)=3(n!)+(λ3)n!x2n+1λn!x1n+1f(x)=n=0f(n)(0)n!xn=n=0(3+λ3x2n+1λx1n+1)xn.

Answered by tanmay.chaudhury50@gmail.com last updated on 27/May/18

Dr=x^3 −4x+4−1  =x^3 −1−4(x−1)  =(x−1)(x^2 +x+1)−4(x−1)  (x−1)(x^2 +x+1−4)  =(x−1)(x^2 +x−3)  ((x+2)/((x−1)(x^2 +x−3)))=(A/(x−1))+((Bx+C)/((x^2 +x−3)))  x+2=A(x^2 +x−3)+(x−1)(Bx+C)  put x=1  3=−A  so A=−3  x+2=−3x^2 −3x+9+Bx^2 +Cx−Bx−C  x+2=x^2 (−3+B)+x(−3−B+C)+9−C  −3+B=0  B=3  −3−B+C=1  −3−3+C=1   C=7  f(x)=((−3)/(x−1))+((3x+7)/(x^2 +x−3))  contf    f(x)=u+v  (u/(−3))=(x−1)^(−1)   (u_1 /(−3))=(−1)(x−1)^(−2)   (u_2 /(−3))=(−1)(−2)(x−1)^(−3)   (u_3 /(−3))=(−1)(−2)(−3)(x−1)^(−4)   .....  .....  (u_n /(−3))=(−1)(−2)(−3)...(−n)(x−1)^(−n−1)   (u_n /(−3))=(((−)^n ×n!)/((x−1)^(n+1) ))  u_n =(−3)×(((−1)^n ×n!)/((x−1)^(n+1) ))   pls check contd

Dr=x34x+41=x314(x1)=(x1)(x2+x+1)4(x1)(x1)(x2+x+14)=(x1)(x2+x3)x+2(x1)(x2+x3)=Ax1+Bx+C(x2+x3)x+2=A(x2+x3)+(x1)(Bx+C)putx=13=AsoA=3x+2=3x23x+9+Bx2+CxBxCx+2=x2(3+B)+x(3B+C)+9C3+B=0B=33B+C=133+C=1C=7f(x)=3x1+3x+7x2+x3contff(x)=u+vu3=(x1)1u13=(1)(x1)2u23=(1)(2)(x1)3u33=(1)(2)(3)(x1)4..........un3=(1)(2)(3)...(n)(x1)n1un3=()n×n!(x1)n+1un=(3)×(1)n×n!(x1)n+1plscheckcontd

Commented by behi83417@gmail.com last updated on 26/May/18

dear mr tanmay and mr Rasheed!  a comment have posted to Q.35844  please check it.thanks.

dearmrtanmayandmrRasheed!acommenthavepostedtoQ.35844pleasecheckit.thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com