All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35990 by abdo mathsup 649 cc last updated on 26/May/18
calculate∫25xdx2x+1+x−1
Commented by abdo mathsup 649 cc last updated on 27/May/18
letputI=∫25xdx2x+1+x−1changementx−1=tgivex=t2+1andI=∫12t2+12t2+2+1+t(2t)dt=∫122t3+2t2t2+t+3dt=∫12t(2t2+t+3)−t2−3t+2t2t2+t+3dt=∫12tdt−∫12t2+t2t2+t+3dtbut∫12tdt=[t22]12=2−12=32∫12t2+t2t2+t+3dt=12∫122t2+t+t+3−32t2+t+3dt=12∫12dt+12∫12t−32t2+t+3dt=12+18∫124t−122t2+t+3dt=12+18JJ=∫124t+1−132t2+t+3dt=[ln(2t2+t+3)]12−13∫12dt2t2+t+3=ln(13)−ln(6)−132∫12dtt2+t2+32butt2+t2+32=t2+214t+116+32−116=(t+14)2+2316chang.t+14=234xgive∫12dtt2+t2+32=∫123(5)92312316(1+x2)234dx=1623234∫523923dx1+x2=423{arctan(92))−arctan(523)}I=32−12−18J=1−18{ln(13)−ln(6)−132423{arctan(923)−arctan(523)}o
I=1−ln(13)8+ln(6)8+13423{arctan(923)−arctan(523)}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com