Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35992 by abdo mathsup 649 cc last updated on 26/May/18

let f(x)= ((sin(2x))/x) χ_(]−a,a[) (x)  with a>0  calculate the fourier trsnsform of f .

$${let}\:{f}\left({x}\right)=\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}\:\chi_{\left.\right]−{a},{a}\left[\right.} \left({x}\right)\:\:{with}\:{a}>\mathrm{0} \\ $$ $${calculate}\:{the}\:{fourier}\:{trsnsform}\:{of}\:{f}\:. \\ $$

Commented byabdo mathsup 649 cc last updated on 27/May/18

F(f(x))= (1/(√(2π))) ∫_(−∞) ^(+∞)   f(t) e^(−ixt)  dt   = (1/(√(2π))) ∫_(−a) ^a  ((sin(2t))/t) e^(−ixt)  dt  = (1/(√(2π))) ∫_(−a) ^a  ((sin(2t))/t) cos(xt)dt  =(√((2/π) ))  ∫_0 ^a    ((sin(2t)cos(xt))/t)dt=(√(2/π)) w(x)  w(x)= ∫_0 ^a   ((sin(2t)cos(xt))/t)dt  w^′ (x) = −∫_0 ^a  sin(2t)sin(xt)dt  but  sin(2t)sin(xt)=(1/2){ cos(x−2)t−cos(x+2)t}⇒  w^′ (x) =−(1/2) {  ∫_0 ^a  cos(x−2)tdt −∫_0 ^a  cos(x+2)t dt}  = (1/2)[ (1/(x+2)) sin(x+2)t]_0 ^a  −(1/2)[(1/(x−2))sin(x−2)t]_0 ^a   = (1/(2x+4)) sin{(x+2)a} −(1/(2x−4))sin{(x−2)a}⇒  w(x) = ∫_0 ^x   ((sin{(t+2)a})/(2t+4))dt −∫_0 ^x  ((sin{(t−2)a})/(2t−4))dt +c  ( c=w(0)= ∫_0 ^a   ((sin(2t))/t)dt)...be continued...

$${F}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} \:\:{f}\left({t}\right)\:{e}^{−{ixt}} \:{dt}\: \\ $$ $$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−{a}} ^{{a}} \:\frac{{sin}\left(\mathrm{2}{t}\right)}{{t}}\:{e}^{−{ixt}} \:{dt} \\ $$ $$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}}\:\int_{−{a}} ^{{a}} \:\frac{{sin}\left(\mathrm{2}{t}\right)}{{t}}\:{cos}\left({xt}\right){dt} \\ $$ $$=\sqrt{\frac{\mathrm{2}}{\pi}\:}\:\:\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{{sin}\left(\mathrm{2}{t}\right){cos}\left({xt}\right)}{{t}}{dt}=\sqrt{\frac{\mathrm{2}}{\pi}}\:{w}\left({x}\right) \\ $$ $${w}\left({x}\right)=\:\int_{\mathrm{0}} ^{{a}} \:\:\frac{{sin}\left(\mathrm{2}{t}\right){cos}\left({xt}\right)}{{t}}{dt} \\ $$ $${w}^{'} \left({x}\right)\:=\:−\int_{\mathrm{0}} ^{{a}} \:{sin}\left(\mathrm{2}{t}\right){sin}\left({xt}\right){dt}\:\:{but} \\ $$ $${sin}\left(\mathrm{2}{t}\right){sin}\left({xt}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{cos}\left({x}−\mathrm{2}\right){t}−{cos}\left({x}+\mathrm{2}\right){t}\right\}\Rightarrow \\ $$ $${w}^{'} \left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\left\{\:\:\int_{\mathrm{0}} ^{{a}} \:{cos}\left({x}−\mathrm{2}\right){tdt}\:−\int_{\mathrm{0}} ^{{a}} \:{cos}\left({x}+\mathrm{2}\right){t}\:{dt}\right\} \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{\mathrm{1}}{{x}+\mathrm{2}}\:{sin}\left({x}+\mathrm{2}\right){t}\right]_{\mathrm{0}} ^{{a}} \:−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{{x}−\mathrm{2}}{sin}\left({x}−\mathrm{2}\right){t}\right]_{\mathrm{0}} ^{{a}} \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{4}}\:{sin}\left\{\left({x}+\mathrm{2}\right){a}\right\}\:−\frac{\mathrm{1}}{\mathrm{2}{x}−\mathrm{4}}{sin}\left\{\left({x}−\mathrm{2}\right){a}\right\}\Rightarrow \\ $$ $${w}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{{sin}\left\{\left({t}+\mathrm{2}\right){a}\right\}}{\mathrm{2}{t}+\mathrm{4}}{dt}\:−\int_{\mathrm{0}} ^{{x}} \:\frac{{sin}\left\{\left({t}−\mathrm{2}\right){a}\right\}}{\mathrm{2}{t}−\mathrm{4}}{dt}\:+{c} \\ $$ $$\left(\:{c}={w}\left(\mathrm{0}\right)=\:\int_{\mathrm{0}} ^{{a}} \:\:\frac{{sin}\left(\mathrm{2}{t}\right)}{{t}}{dt}\right)...{be}\:{continued}... \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com