Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 36010 by abdo mathsup 649 cc last updated on 27/May/18

let f(x)=  (x/(x^2  +x+1))  1) calculate f^((n)) (0)  2) developp f  at integr serie .

letf(x)=xx2+x+11)calculatef(n)(0)2)developpfatintegrserie.

Commented by prof Abdo imad last updated on 28/May/18

let decompose f(x)inside C(x) the roots of  p(x)=x^2  +x+1 are are j =e^(i((2π)/3))  and j^−  =e^(−i((2π)/3))  so  f(x)=  (x/((x−j)(x−j^− ))) = (a/(x−j)) +(b/(x−j^− ))  a=lim_(x→j) (x−j)f(x) = (j/(j−j^− )) = (j/(2 ((√3)/2))) = (j/(√3))  b =lim_(x→j^− ) (x−j^− )f(x)= (j^− /(j^− −j)) =−(j^− /(√3)) ⇒  f(x) = (j/((√3)(x−j))) −(j^− /((√3)(x−j^− ))) ⇒  f^((n)) (x) = (j/(√3)){ (((−1)^n n!)/((x−j)^(n+1) ))} −(j^− /(√3)) { (((−1)^n  n!)/((x−j^− )^(n+1) ))}  f^((n)) (x) = (((−1)^n n!)/(√3)){  (j/((x−j)^(n+1) )) −(j^− /((x−j^− )^(n+1) ))}  =(((−1)^n n!)/(√3)){ ((j(x−j^− )^(n+1)  −j^− (x−j)^(n+1) )/((x^2  +x+1)^(n+1) ))}

letdecomposef(x)insideC(x)therootsofp(x)=x2+x+1arearej=ei2π3andj=ei2π3sof(x)=x(xj)(xj)=axj+bxja=limxj(xj)f(x)=jjj=j232=j3b=limxj(xj)f(x)=jjj=j3f(x)=j3(xj)j3(xj)f(n)(x)=j3{(1)nn!(xj)n+1}j3{(1)nn!(xj)n+1}f(n)(x)=(1)nn!3{j(xj)n+1j(xj)n+1}=(1)nn!3{j(xj)n+1j(xj)n+1(x2+x+1)n+1}

Commented by prof Abdo imad last updated on 28/May/18

so f^((n)) (0) = (((−1)^n n!)/(√3)){ ((j(−j^− )^(n+1)  −j^− (−j)^(n+1) )/1)}  =(((−1)^n n!)/(√3)){  (−1)^(n+1)  j(j^− )^(n+1)  −(−1)^(n+1) j^−  j^(n+1) }  =(((−1)^n n!)/(√3)) (−1)^(n+1) {  j^−^n    −j^n }  = (1/(√3)){  2Im(j^n )) = (2/(√3)) sin(((2nπ)/3))  f^((n)) (0) = (2/(√3))sin(((2nπ)/3)).  2) we have f(x) = Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n  ⇒  f(x) = Σ_(n=0) ^∞     (2/(√3))  ((sin(((2nπ)/3)))/(n!)) x^n   .  f(x) = (2/(√3)) Σ_(n=0) ^∞    ((sin(((2nπ)/3)))/(n!)) x^n   .

sof(n)(0)=(1)nn!3{j(j)n+1j(j)n+11}=(1)nn!3{(1)n+1j(j)n+1(1)n+1jjn+1}=(1)nn!3(1)n+1{jnjn}=13{2Im(jn))=23sin(2nπ3)f(n)(0)=23sin(2nπ3).2)wehavef(x)=n=0f(n)(0)n!xnf(x)=n=023sin(2nπ3)n!xn.f(x)=23n=0sin(2nπ3)n!xn.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com