Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 36018 by math1967 last updated on 27/May/18

Find the value of  lim_(x→(π/2))  ((sinx−(sinx)^(sinx) )/(1−sinx+lnsinx))

Findthevalueoflimxπ2sinx(sinx)sinx1sinx+lnsinx

Answered by tanmay.chaudhury50@gmail.com last updated on 27/May/18

t=(Π/2)−x   lim_(t→0)  ((sin((Π/2)−t)−{sin((Π/2)−t)}^({sin((Π/2)−t)}) )/(1−sin((Π/2)−t)+lnsin((Π/2)−t)))  lim_(t→0)  ((cost−(cost)^(cost) )/(1−cost+lncost))  k=cost  lim_(k→1)  ((k−k^k )/(1−k+lnk))  ((0/0))form using lh rule    y=k^k   lny=klnk  (1/y)(dy/dk)=k×(1/k)+lnk  (dy/dk)=k^k (1+lnk)  lim_(k→1)  ((1−k^k (1+lnk))/(−1+(1/k))) ((0/0))  lim_(k→1)  ((0−k^k ((1/k))−(1+lnk)(k^k )(1+lnk))/((−1)/k^2 ))  =((−1−(1+0)(1)(1+0))/(−1))  =((−2)/(−1))=2  Ans

t=Π2xlimt0sin(Π2t){sin(Π2t)}{sin(Π2t)}1sin(Π2t)+lnsin(Π2t)limt0cost(cost)cost1cost+lncostk=costlimk1kkk1k+lnk(00)formusinglhruley=kklny=klnk1ydydk=k×1k+lnkdydk=kk(1+lnk)limk11kk(1+lnk)1+1k(00)limk10kk(1k)(1+lnk)(kk)(1+lnk)1k2=1(1+0)(1)(1+0)1=21=2Ans

Terms of Service

Privacy Policy

Contact: info@tinkutara.com