Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 36024 by bshahid010@gmail.com last updated on 27/May/18

Commented by abdo mathsup 649 cc last updated on 27/May/18

let use the changement  x =1+t so  (m/(x^m  −1)) −(p/(x^p  −1)) =(m/((1+t)^m  −1)) − (p/((1+t)^p  −1)) but  (1+t)^m  ∼  1+mt +((m(m−1))/2) t^2   (1+t)^p  ∼ 1+pt +((p(p−1))/2) t^2  ⇒  (m/(x^m −1)) −(p/(x^p −1)) ∼   (m/(mt+((m(m−1))/2)t^2 )) −(p/(pt +((p(p−1))/2)t^2 ))  =  (1/(t +((m−1)/2)t^2 )) − (1/(t +((p−1)/2)t^2 ))  =2{   (1/(2t +(m−1)t^2 ))  −(1/(2t +(p−1)t^2 ))}  =2{ ((2t  +(p−1)t^2  −2t −(m−1)t^2 )/(t^2 (2 +(m−1)t )(2+(p−1)t)))}  = 2 ((p−m)/((2 +(m−1)t)( 2+(p−1)t))) →_(t→0)   ((p−m)/2)

letusethechangementx=1+tsomxm1pxp1=m(1+t)m1p(1+t)p1but(1+t)m1+mt+m(m1)2t2(1+t)p1+pt+p(p1)2t2mxm1pxp1mmt+m(m1)2t2ppt+p(p1)2t2=1t+m12t21t+p12t2=2{12t+(m1)t212t+(p1)t2}=2{2t+(p1)t22t(m1)t2t2(2+(m1)t)(2+(p1)t)}=2pm(2+(m1)t)(2+(p1)t)t0pm2

Commented by tanmay.chaudhury50@gmail.com last updated on 27/May/18

excellent...

excellent...

Answered by ajfour last updated on 27/May/18

=lim_(x→1) ((m/(mh+((m(m−1))/2)h^2 ))−(p/(ph+((p(p−1))/2)h^2 )))  =lim_(x→1) ((((((p−1))/2)h^2 −(((m−1))/2)h^2 +...)/(h^2 +∗h^3 +...)))  = ((p−m)/2) .

=limx1(mmh+m(m1)2h2pph+p(p1)2h2)=limx1((p1)2h2(m1)2h2+...h2+h3+...)=pm2.

Commented by tanmay.chaudhury50@gmail.com last updated on 27/May/18

good...here you have ignored higher power of  h and h=x−1

good...hereyouhaveignoredhigherpowerofhandh=x1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com