Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36057 by abdo mathsup 649 cc last updated on 28/May/18

find the value of  ∫_0 ^(π/4)     ((cosx)/(sinx +tanx))dx

findthevalueof0π4cosxsinx+tanxdx

Commented by abdo mathsup 649 cc last updated on 30/May/18

let I = ∫_0 ^(π/4)    ((cosx)/(sinx +tanx))dx  I = ∫_0 ^(π/4)    ((cosx)/(sinx +((sinx)/(cosx))))dx = ∫_0 ^(π/4)    ((cos^2 x)/(sinx.cosx +sinx))dx  changement   tan((x/2)) =t give  I = ∫_0 ^((√2) −1)       (((((1−t^2 )/(1+t^2 )))^2 )/(((2t (1−t^(2)) )/((1+t^2 )^2 ))  +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 2∫_0 ^((√2) −1)        (((1−t^2 )^2 )/(2t(1−t^2 ) +2t(1+t^2 )))  (dt/(1+t^2 ))  =2 ∫_0 ^((√2) −1)        (((1−t^2 )^2 )/((1+t^2 )( 2t −2t^3  +2t +2t^3 )))dt  = (1/2) ∫_0 ^((√2) −1)       (((1−t^2 )^2 )/((1+t^2 )t)) dt ⇒  2I = ∫_0 ^((√2)−1)     ((t^4  −2t^2  +1)/(t^3  +t))dt  =∫_0 ^((√2)−1)     ((t(t^3 +t)−t^2 −2t^2 +1)/(t^(3 ) +t))dt  = ∫_0 ^((√2)−1)   t dt  +∫_0 ^((√2) −1)  ((−3t^2  +1)/(t^3  +t))dt  but  ∫_0 ^((√2) −1) tdt =[(t^2 /2)]_0 ^((√2)−1)  =((((√2)−1)^2 )/2)  let decompose  F(t) = ((−3t^2  +1)/(t^3 +t))  F(t) = ((−3t^2  +1)/(t^3  +t)) = (a/t) +((bt +c)/(t^2  +1))  a=lim_(t→0) tF(t) = 1 =a  lim_(t→+∞) t F(t) = −3 =a +b ⇒b=−3−a=−4  F(t) =  (1/t) +((−4t +c)/(t^(2 ) +1))  F(1) =−1 = 1 +((−4+c)/2) =−1 +(c/2) ⇒c=0 ⇒  F(t)= (1/t)  −((4t)/(t^2  +1)) ⇒  ∫_0 ^((√2) −1)   ((−3t^2  +1)/(t^3   +t))dt = ∫_0 ^((√2)−1) { (1/t) −((4t)/(t^2  +1))}dt  =[ln∣t∣ −2 ln(t^2  +1)]_0 ^((√2) −1)   = [ln( (t/((t^2 +1)^2 )))]_0 ^((√2)−1)  = ln((((√2) −1)/({((√2) −1)^2 +1}^( ))) −ln(0^+ )  =+∞  so this integral is divergent !

letI=0π4cosxsinx+tanxdxI=0π4cosxsinx+sinxcosxdx=0π4cos2xsinx.cosx+sinxdxchangementtan(x2)=tgiveI=021(1t21+t2)22t(1t2)(1+t2)2+2t1+t22dt1+t2=2021(1t2)22t(1t2)+2t(1+t2)dt1+t2=2021(1t2)2(1+t2)(2t2t3+2t+2t3)dt=12021(1t2)2(1+t2)tdt2I=021t42t2+1t3+tdt=021t(t3+t)t22t2+1t3+tdt=021tdt+0213t2+1t3+tdtbut021tdt=[t22]021=(21)22letdecomposeF(t)=3t2+1t3+tF(t)=3t2+1t3+t=at+bt+ct2+1a=limt0tF(t)=1=alimt+tF(t)=3=a+bb=3a=4F(t)=1t+4t+ct2+1F(1)=1=1+4+c2=1+c2c=0F(t)=1t4tt2+10213t2+1t3+tdt=021{1t4tt2+1}dt=[lnt2ln(t2+1)]021=[ln(t(t2+1)2)]021=ln(21{(21)2+1}()ln(0+)=+sothisintegralisdivergent!

Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18

∫_0 ^(Π/4) ((cos^2 x)/(sinxcosx+sinx )) dx  (−1)∫_0 ^(Π/4) ((1−cos^2 x−1)/(sinx(1+cosx)))dx  (−1)∫_0 ^(Π/4) ((1−cosx)/(sinx))dx+∫_0 ^(Π/4) ((sinx)/(sin^2 x(1+cosx)))dx  ∫_0 ^(Π/4) ((cotx−cosecx)/)−∫_1 ^(1/(√2)) (dt/((1−t^2 )(1+t)))  ∣lnsinx−lntan(x/2)∣_0 ^(Π/4) +I_2   I_2 =∫_1 ^(1/(√2)) (A/(1+t))+(B/(1−t))+(C/((1+t)^2 )) dt  (1/((1+t)^2 (1−t)))=(A/(1+t))+(B/(1−t))+(C/((1+t)^2 ))  1=A(1+t)(1−t)+B(1+t)^2 +C(1−t)  1=A(1−t^2 )+B(1+2t+t^2 )+C(1−t)  A−At^2 +B+2Bt+Bt^2 +C−Ct=1  A+B+C+t(2B−C)+t^2 (B−A)=1  A+B+C=1  2B−C=0  B−A=0  A=B  2B−C=0  C=2B  A+B+C=1  B+B+2B=1  B=(1/4)  A=(1/4)  C=(1/2)  ∫_1 ^(1/(√2)) ((1/4)/(1+t))dt+∫_1 ^(1/(√2)) ((1/4)/(1−t))dt+∫_1 ^(1/(√2)) ((1/2)/((1+t)^2 ))dt  ∣(1/4)ln(1+t)−(1/4)ln(1−t)−(1/2)×(1/(1+t))∣_1 ^(1/(√2))

0Π4cos2xsinxcosx+sinxdx(1)0Π41cos2x1sinx(1+cosx)dx(1)0Π41cosxsinxdx+0Π4sinxsin2x(1+cosx)dx0Π4cotxcosecx112dt(1t2)(1+t)lnsinxlntanx20Π4+I2I2=112A1+t+B1t+C(1+t)2dt1(1+t)2(1t)=A1+t+B1t+C(1+t)21=A(1+t)(1t)+B(1+t)2+C(1t)1=A(1t2)+B(1+2t+t2)+C(1t)AAt2+B+2Bt+Bt2+CCt=1A+B+C+t(2BC)+t2(BA)=1A+B+C=12BC=0BA=0A=B2BC=0C=2BA+B+C=1B+B+2B=1B=14A=14C=12112141+tdt+112141tdt+11212(1+t)2dt14ln(1+t)14ln(1t)12×11+t112

Answered by sma3l2996 last updated on 28/May/18

A=∫_0 ^(π/4) ((cosx)/(sinx+tanx))dx=∫_0 ^(π/4) ((cos^2 x)/(cosxsinx+sinx))dx  =∫_0 ^(π/4) ((1−sin^2 x)/(sinx(cosx+1)))dx=∫_0 ^(π/4) (dx/(sinx(cosx+1)))−∫_0 ^(π/4) ((sinx)/(1+cosx))dx  =∫_0 ^(π/4) (dx/(sinx(cosx+1)))+[ln∣1+cosx∣]_0 ^(π/4)   let  u=tanx/2⇒dx=((2du)/(1+u^2 ))  sinx=2cos(x/2)sin(x/2)=((2u)/(1+u^2 ))  1+cosx=2cos^2 (x/2)=(2/(1+u^2 ))  A=ln((((√2)+1)/2))−ln2+∫_0 ^(tan^(−1) (π/8)) (1/(((2u)/(1+u^2 ))×(2/(1+u^2 ))))×((2du)/(1+u^2 ))  A=ln((√2)+2)−2ln2+(1/2)∫_0 ^((√2)−1) ((1+u^2 )/u)du  =ln((√2)+2)−2ln2+(1/2)[lnu+(1/2)u^2 ]_0 ^((√2)−1)   A=−∞    because (lim_(u→0) lnu=−∞)

A=0π/4cosxsinx+tanxdx=0π/4cos2xcosxsinx+sinxdx=0π/41sin2xsinx(cosx+1)dx=0π/4dxsinx(cosx+1)0π/4sinx1+cosxdx=0π/4dxsinx(cosx+1)+[ln1+cosx]0π/4letu=tanx/2dx=2du1+u2sinx=2cos(x/2)sin(x/2)=2u1+u21+cosx=2cos2(x/2)=21+u2A=ln(2+12)ln2+0tan1(π/8)12u1+u2×21+u2×2du1+u2A=ln(2+2)2ln2+120211+u2udu=ln(2+2)2ln2+12[lnu+12u2]021A=because(limlnuu0=)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com