Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 36096 by rahul 19 last updated on 28/May/18

Commented by rahul 19 last updated on 30/May/18

??

$$?? \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18

i am trying to solve by the following method  1)calculate potential for infinite −ve charge  sheet at p then substruct it by the potential  by disc of radius R ...same for +ve sheet and  then add  2)same method for electric field...  pls wait

$${i}\:{am}\:{trying}\:{to}\:{solve}\:{by}\:{the}\:{following}\:{method} \\ $$$$\left.\mathrm{1}\right){calculate}\:{potential}\:{for}\:{infinite}\:−{ve}\:{charge} \\ $$$${sheet}\:{at}\:{p}\:{then}\:{substruct}\:{it}\:{by}\:{the}\:{potential} \\ $$$${by}\:{disc}\:{of}\:{radius}\:{R}\:...{same}\:{for}\:+{ve}\:{sheet}\:{and} \\ $$$${then}\:{add} \\ $$$$\left.\mathrm{2}\right){same}\:{method}\:{for}\:{electric}\:{field}... \\ $$$${pls}\:{wait} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18

Answered by tanmay.chaudhury50@gmail.com last updated on 31/May/18

formula  E=(σ/(2ε_0 ))(1−(z/((√(z^2 +R^2 )) ))) for charge disc  E=(σ/(2ε_0 )) for infinite sheet  value of z=x+(l/2) for −ve charged sheet  vslue of z=x−(l/2) for +ve charged sheet  now E for −ve charged sheet  =(((−σ))/(2ε_0 ))−(((−σ))/(2ε_0 )){1−(((x+(l/2)))/(√((x+(l/2))^2 +R^2 )))}  =(((−σ))/(2ε_0 )){1−1+(((x+(l/2)))/(√((x+(l/2))^2 +R^2  )))}  =(((−σ))/(2ε_0 )){(((x+(l/2)))/(√((x+(l/2))^2 +R^2 )))}  similarly E for +ve charged sheet  =(((+σ))/(2ε_0 )){(((x−(l/2)))/(√((x−(l/2))^2 +R^2 )))}  so net E at p=  (σ/(2ε_0 )){(((x−(l/2)))/(√((x−(l/2))^2 +R^2 )))−(((x+(l/2)))/(√((x+(l/2))^2 +R^2 )))}  now approximatation...l≫R  =(((x−(l/2)))/((x−(l/2))(√(1_ +((R/(x−(l/2))))^2 ))))  ={1+((R/(x−(l/2))))^2 }^(−(1/2)) ≈1−(1/2)((R/(x−(l/2))))^2     (((x+(l/2)))/((x+(l/2))(√(1+((R/(x+(l/2))))^2 ))))   =(({1+((R/(x+(l/2))))^2 }^((−1)/2) )/)  ≈1−(1/2)((R/(x+(l/2))))^2   =(σ/(2ε_0 )){1−(1/2)((R/(x−(l/2))))^2 −1+(1/2)((R/(x+(l/2))))^2 }  =((σR^2 )/(4ε_0 )){(((x+(l/2))^2 −(x−(l/2))^2 )/((x^2 −(l^2 /4))^2 ))}  =((σR^2 )/(4ε_0 )){((4.x.(l/2))/((x^2 −(l^2 /4))^2 ))}  =((σR^2 xl)/(2ε_0 (x^2 −(l^2 /4))^2 ))  ≈((σR^2 xl)/(2ε_0 x^4 ))         considering (x≫(l/2))  =((σR^2 l)/(2ε_0 x^3 ))  pls check and suggest

$${formula} \\ $$$${E}=\frac{\sigma}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\mathrm{1}−\frac{{z}}{\sqrt{{z}^{\mathrm{2}} +{R}^{\mathrm{2}} }\:}\right)\:{for}\:{charge}\:{disc} \\ $$$${E}=\frac{\sigma}{\mathrm{2}\epsilon_{\mathrm{0}} }\:{for}\:{infinite}\:{sheet} \\ $$$${value}\:{of}\:{z}={x}+\frac{{l}}{\mathrm{2}}\:{for}\:−{ve}\:{charged}\:{sheet} \\ $$$${vslue}\:{of}\:{z}={x}−\frac{{l}}{\mathrm{2}}\:{for}\:+{ve}\:{charged}\:{sheet} \\ $$$${now}\:{E}\:{for}\:−{ve}\:{charged}\:{sheet} \\ $$$$=\frac{\left(−\sigma\right)}{\mathrm{2}\epsilon_{\mathrm{0}} }−\frac{\left(−\sigma\right)}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{\mathrm{1}−\frac{\left({x}+\frac{{l}}{\mathrm{2}}\right)}{\sqrt{\left({x}+\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} }}\right\} \\ $$$$=\frac{\left(−\sigma\right)}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{\mathrm{1}−\mathrm{1}+\frac{\left({x}+\frac{{l}}{\mathrm{2}}\right)}{\sqrt{\left({x}+\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} \:}}\right\} \\ $$$$=\frac{\left(−\sigma\right)}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{\frac{\left({x}+\frac{{l}}{\mathrm{2}}\right)}{\sqrt{\left({x}+\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} }}\right\} \\ $$$${similarly}\:{E}\:{for}\:+{ve}\:{charged}\:{sheet} \\ $$$$=\frac{\left(+\sigma\right)}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{\frac{\left({x}−\frac{{l}}{\mathrm{2}}\right)}{\sqrt{\left({x}−\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} }}\right\} \\ $$$${so}\:{net}\:{E}\:{at}\:{p}= \\ $$$$\frac{\sigma}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{\frac{\left({x}−\frac{{l}}{\mathrm{2}}\right)}{\sqrt{\left({x}−\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} }}−\frac{\left({x}+\frac{{l}}{\mathrm{2}}\right)}{\sqrt{\left({x}+\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} }}\right\} \\ $$$${now}\:{approximatation}...{l}\gg{R} \\ $$$$=\frac{\left({x}−\frac{{l}}{\mathrm{2}}\right)}{\left({x}−\frac{{l}}{\mathrm{2}}\right)\sqrt{\mathrm{1}_{} +\left(\frac{{R}}{{x}−\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} }} \\ $$$$=\left\{\mathrm{1}+\left(\frac{{R}}{{x}−\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} \right\}^{−\frac{\mathrm{1}}{\mathrm{2}}} \approx\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{R}}{{x}−\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\frac{\left({x}+\frac{{l}}{\mathrm{2}}\right)}{\left({x}+\frac{{l}}{\mathrm{2}}\right)\sqrt{\mathrm{1}+\left(\frac{{R}}{{x}+\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} }}\: \\ $$$$=\frac{\left\{\mathrm{1}+\left(\frac{{R}}{{x}+\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} \right\}^{\frac{−\mathrm{1}}{\mathrm{2}}} }{} \\ $$$$\approx\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{R}}{{x}+\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} \\ $$$$=\frac{\sigma}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{R}}{{x}−\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{R}}{{x}+\frac{{l}}{\mathrm{2}}}\right)^{\mathrm{2}} \right\} \\ $$$$=\frac{\sigma{R}^{\mathrm{2}} }{\mathrm{4}\epsilon_{\mathrm{0}} }\left\{\frac{\left({x}+\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} −\left({x}−\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{2}} }\right\} \\ $$$$=\frac{\sigma{R}^{\mathrm{2}} }{\mathrm{4}\epsilon_{\mathrm{0}} }\left\{\frac{\mathrm{4}.{x}.\frac{{l}}{\mathrm{2}}}{\left({x}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{2}} }\right\} \\ $$$$=\frac{\sigma{R}^{\mathrm{2}} {xl}}{\mathrm{2}\epsilon_{\mathrm{0}} \left({x}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$$\approx\frac{\sigma{R}^{\mathrm{2}} {xl}}{\mathrm{2}\epsilon_{\mathrm{0}} {x}^{\mathrm{4}} }\:\:\:\:\:\:\:\:\:{considering}\:\left({x}\gg\frac{{l}}{\mathrm{2}}\right) \\ $$$$=\frac{\sigma{R}^{\mathrm{2}} {l}}{\mathrm{2}\epsilon_{\mathrm{0}} {x}^{\mathrm{3}} }\:\:{pls}\:{check}\:{and}\:{suggest} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com