Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 36163 by bshahid010@gmail.com last updated on 29/May/18

Commented by abdo mathsup 649 cc last updated on 29/May/18

let put  A_n = Π_(k=2) ^n  (  1 −(1/k^2 ))  = Π_(k=2) ^n    (((k−1)(k+1))/k^2 ) = Π_(k=2) ^n  ((k−1)/k) .Π_(k=2) ^n  ((k+1)/k) but  Π_(k=2) ^n   ((k−1)/k) = (1/2).(2/3).(3/4).....((n−1)/n) = (1/n)  Π_(k=2) ^n    ((k+1)/k) = (3/2).(4/3).(5/4)....(n/(n−1)).((n+1)/n) = ((n+1)/2) ⇒  A_n = ((n+1)/(2n))  and lim_(n→+∞)  A_n = (1/2) .

letputAn=k=2n(11k2)=k=2n(k1)(k+1)k2=k=2nk1k.k=2nk+1kbutk=2nk1k=12.23.34.....n1n=1nk=2nk+1k=32.43.54....nn1.n+1n=n+12An=n+12nandlimn+An=12.

Commented by abdo mathsup 649 cc last updated on 29/May/18

remark we have ln(A_n )= Σ_(k=2) ^n   ln(1−(1/k^2 ))  ln(((n+1)/(2n))) ⇒lim_(n→+∞) ln(A_n ) =−ln(2) ⇒  Σ_(n=2) ^∞   ln(1−(1/n^2 )) =−ln(2)

remarkwehaveln(An)=k=2nln(11k2)ln(n+12n)limn+ln(An)=ln(2)n=2ln(11n2)=ln(2)

Commented by bshahid010@gmail.com last updated on 30/May/18

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com