All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36167 by abdo mathsup 649 cc last updated on 29/May/18
letgiveI=∫0∞dx(x2+i)21)extractRe(I)andIm(I)2)findthevalueofI3)calculateRe(I)andIm(I).
Commented by maxmathsup by imad last updated on 22/Aug/18
1)wehaveI=∫0∞(x2−i)2(x2+i)2(x2−i)2dx=∫0∞x4−2ix2−1(x4+1)2dx=∫0∞x4−1(x4+1)2dx+i∫0∞−2x2(x4+1)2dx⇒Re(I)=∫0∞x4−1(x4+1)2dxandIm(I)=∫0∞−2x2(x4+1)2dx
2)wehave2I=∫−∞+∞dx(x2+i)2letconsiderthecomplexfunctionφ(z)=1(z2+i)2⇒φ(z)=1(z2−(−i)2)2=1(z−−i)2(z+−i)2=1(z−e−iπ4)2(z+e−iπ4)2sothepolesofφare+−e−iπ4(doubles)⇒∫−∞+∞φ(z)dz=2iπRes(φ,−e−iπ4)butRes(φ,e−iπ4)=limz→−e−iπ41(2−1)!{(z+e−iπ4)2φ(z)}(1)=limz→−e−iπ4{(z−e−iπ4)−2}(1)=limz→−e−iπ4−2(z−e−iπ4)−3=−2(−2e−iπ4)−3=−2(−2)3ei3π4=14ei3π4=14{cos(3π4)+isin(3π4)}=14{−12+i2}⇒∫−∞+∞φ(z)dz=2iπ4{−12+i2}=iπ2{−12+i2}=2I⇒I=iπ4{−12+i2}=−π42−π42i3)wehaveI=Re(I)+iIm(I)⇒Re(I)=−π42andIm(I)=−π42
Terms of Service
Privacy Policy
Contact: info@tinkutara.com