Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36167 by abdo mathsup 649 cc last updated on 29/May/18

let give  I  = ∫_0 ^∞    (dx/((x^2  +i)^2 ))  1) extract Re(I) and Im(I)  2) find the value of I  3) calculate Re(I) and Im(I) .

letgiveI=0dx(x2+i)21)extractRe(I)andIm(I)2)findthevalueofI3)calculateRe(I)andIm(I).

Commented by maxmathsup by imad last updated on 22/Aug/18

1) we have  I =∫_0 ^∞    (((x^2 −i)^2 )/((x^2  +i)^2 (x^2 −i)^2 ))dx  =∫_0 ^∞     ((x^4  −2ix^2  −1)/((x^4  +1)^2 )) dx  = ∫_0 ^∞   ((x^4 −1)/((x^4  +1)^2 )) dx +i ∫_0 ^∞    ((−2x^2 )/((x^4  +1)^2 )) dx ⇒  Re(I) =∫_0 ^∞     ((x^4 −1)/((x^4  +1)^2 )) dx  and  Im(I) =∫_0 ^∞    ((−2x^2 )/((x^4  +1)^2 ))dx

1)wehaveI=0(x2i)2(x2+i)2(x2i)2dx=0x42ix21(x4+1)2dx=0x41(x4+1)2dx+i02x2(x4+1)2dxRe(I)=0x41(x4+1)2dxandIm(I)=02x2(x4+1)2dx

Commented by maxmathsup by imad last updated on 22/Aug/18

2) we have 2I =∫_(−∞) ^(+∞)    (dx/((x^2 +i)^2 ))  let consider the complex function  ϕ(z) = (1/((z^2 +i)^2 ))  ⇒ϕ(z) = (1/((z^2 −((√(−i)))^2 )^2 )) =(1/((z−(√(−i)))^2 (z+(√(−i)))^2 ))  = (1/((z−e^(−((iπ)/4)) )^2 (z +e^(−((iπ)/4)) )^2 ))  so the poles of ϕ are +^−  e^(−((iπ)/4))   (doubles) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,−e^(−((iπ)/4)) )  but  Res(ϕ,e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )      (1/((2−1)!)){(z+e^(−((iπ)/4)) )^2 ϕ(z)}^((1))   =lim_(z→−e^(−((iπ)/4)) ) {(z−e^(−((iπ)/4)) )^(−2) }^((1))  =lim_(z→−e^(−((iπ)/4)) )    −2 (z−e^(−((iπ)/4)) )^(−3)   =−2(−2 e^(−((iπ)/4)) )^(−3)  =((−2)/((−2)^3 )) e^(i((3π)/4))   =(1/4) e^((i3π)/4)  =(1/4){cos(((3π)/4)) +isin(((3π)/4))}  =(1/4){−(1/(√2)) +(i/(√2))} ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/4){−(1/(√2)) +(i/(√2))}=((iπ)/2){−(1/(√2)) +(i/(√2))} =2I ⇒  I =((iπ)/4){−(1/(√2)) +(i/(√2))} =−(π/(4(√2))) −(π/(4(√2))) i  3) we have I =Re(I) +iIm(I) ⇒Re(I) =−(π/(4(√2))) and Im(I) =−(π/(4(√2)))

2)wehave2I=+dx(x2+i)2letconsiderthecomplexfunctionφ(z)=1(z2+i)2φ(z)=1(z2(i)2)2=1(zi)2(z+i)2=1(zeiπ4)2(z+eiπ4)2sothepolesofφare+eiπ4(doubles)+φ(z)dz=2iπRes(φ,eiπ4)butRes(φ,eiπ4)=limzeiπ41(21)!{(z+eiπ4)2φ(z)}(1)=limzeiπ4{(zeiπ4)2}(1)=limzeiπ42(zeiπ4)3=2(2eiπ4)3=2(2)3ei3π4=14ei3π4=14{cos(3π4)+isin(3π4)}=14{12+i2}+φ(z)dz=2iπ4{12+i2}=iπ2{12+i2}=2II=iπ4{12+i2}=π42π42i3)wehaveI=Re(I)+iIm(I)Re(I)=π42andIm(I)=π42

Terms of Service

Privacy Policy

Contact: info@tinkutara.com