Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 36168 by abdo mathsup 649 cc last updated on 29/May/18

let A(t) = ∫_(−∞) ^(+∞)     ((sin(xt))/(( x +1+i)^2 )) dx  with t from R  2) calculate A(t)  2) extract Re(A(t)) and Im(A(t))  3) find the value of  ∫_(−∞) ^(+∞)      ((cos(3x))/((x+1+i)^2 ))dx

letA(t)=+sin(xt)(x+1+i)2dxwithtfromR2)calculateA(t)2)extractRe(A(t))andIm(A(t))3)findthevalueof+cos(3x)(x+1+i)2dx

Commented by maxmathsup by imad last updated on 20/Aug/18

2) we have A(t) =∫_(−∞) ^(+∞)    ((sin(xt)(x+1−i)^2 )/((x+1+i)^2 (x+1−i)^2 ))dx  = ∫_(−∞) ^(+∞)    ((sin(xt){x^2  +2x(1−i) +(1−i)^2 })/({(x+1)^2  +1}^2 )) dx  =∫_(−∞) ^(+∞)    ((sin(xt){ x^2  +2x−2xi −2i })/({(x+1)^z  +1}^2 ))dx  =∫_(−∞) ^(+∞)   (((x^2  +2x)sin(xt))/({(x+1)^2  +1}^2 ))dx + i ∫_(−∞) ^(+∞)   (((−2x−2)sin(xt))/({(x+1)^2  +1}^2 ))dx ⇒  Re(A(x)) =∫_(−∞) ^(+∞)   (((x^2  +2x)sin(xt))/({(x+1)^2  +1}^2 ))dx  and  Im (A(x)) = ∫_(−∞) ^(+∞)   (((−2x−2)sin(xt))/({(x+1)^2  +1}^2 )) dx

2)wehaveA(t)=+sin(xt)(x+1i)2(x+1+i)2(x+1i)2dx=+sin(xt){x2+2x(1i)+(1i)2}{(x+1)2+1}2dx=+sin(xt){x2+2x2xi2i}{(x+1)z+1}2dx=+(x2+2x)sin(xt){(x+1)2+1}2dx+i+(2x2)sin(xt){(x+1)2+1}2dxRe(A(x))=+(x2+2x)sin(xt){(x+1)2+1}2dxandIm(A(x))=+(2x2)sin(xt){(x+1)2+1}2dx

Commented by maxmathsup by imad last updated on 21/Aug/18

3) let I = ∫_(−∞) ^(+∞)    ((cos(3x))/((x+1+i)^2 ))dx ⇒I = ∫_(−∞) ^(+∞)   ((cos(3x)(x+1−i)^2 )/((x+1+i)^2 (x+1−i)^2 ))dx  = ∫_(−∞) ^(+∞)    ((cos(3x){x^2  +2x(1−i) +(1−i)^2 ))/({(x+1)^2  +1}^2 )) dx  = ∫_(−∞) ^(+∞)    ((cos(3x){x^2  +2x −2xi −2i})/({(x+1)^2  +1}^2 )) dx  =∫_(−∞) ^(+∞)   (((x^2  +2x)cos(3x))/({(x+1)^2  +1}^2 )) dx + i∫_(−∞) ^(+∞)    (((−2x−2)cos(3x))/({(x+1)^2  +1}^2 )) dx =H +iK  let find H   H = Re( ∫_(−∞) ^(+∞)   (((x^2  +2x)e^(i3x) )/({(x+1)^2  +1}^2 ))dx)  cha7gement x+1 =t give  ∫_(−∞) ^(+∞)    (((x^2  +2x)e^(i3x) )/({(x+1)^2  +1}^2 ))dx = ∫_(−∞) ^(+∞)   (({(t−1)^2  +2(t−1)}e^(i3(t−1)) )/((t^2  +1)^2 ))  = ∫_(−∞) ^(+∞)   (({t^2 −2t +1 +2t−2} e^(i3(t−1)) )/((t^2  +1)^2 ))dt=e^(−3i) ∫_(−∞) ^(+∞)    (((t^2  −1)e^(i3t) )/((t^2  +1)^2 ))dt  let ϕ(z) =(((z^2  −1)e^(i3z) )/((z^2  +1)^2 ))  we have ϕ(z) =(((z^2 −1) e^(3iz) )/((z−i)^2 (z+i)^2 ))  the poles of ϕ are i and −i(doubles) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)   but  Res(ϕ,i) =lim_(z→i) { (z−i)^2 ϕ(z)}^((1)) =lim_(z→i) {(((z^2 −1)e^(3iz) )/((z+i)^2 ))}^((1))   = lim_(z→i)      (((2z e^(3iz)  +3i(z^2 −1)e^(3iz) )(z+i)^2  −2(z+i)(z^2 −i)e^(3iz) )/((z+i)^4 ))  =lim_(z→i)    (((2z +3iz^2  −3i)e^(3iz) (z+i) −2(z^2 −i) e^(3iz) )/((z+i)^3 ))  =(((2i−3i −3i)e^(−3) (2i) −2(−1−i)e^(−3) )/((2i)^3 )) = ((−4i(2i)e^(−3)  +2(1+i)e^(−3) )/(−8i))   =−(((10 +2i)e^(−3) )/(8i)) =((i(5 +i)e^(−3) )/4) ⇒  e^(−3i)   ∫_(−∞) ^(+∞)   ϕ(z)dz =e^(−3i )  {2iπ ((i(5+i)e^(−3) )/4)} =e^(−3i)  (−(π/2)(5+i))  =−(π/2)(5+i)( cos(3)−isin(3))  =−(π/2){5 cos(3)−5i sin(3) +i cos(3) +sin(3)}  H =Re( ∫...) =−(π/2)( 5 cos(3) +sin(3))   let find k  we have  −K =Re( ∫_(−∞) ^(+∞)  (((2x+2) e^(i3x) )/({(x+1)^2  +1}^2 ))dx)   changement x+1 =t give  ∫_(−∞) ^(+∞)   (((2x+2) e^(i3x) )/({(x+1)^2  +1}^2 ))dx =∫_(−∞) ^(+∞)   (({2(t−1) +2}e^(i3(t−1)) )/({t^2  +1}^2 ))dt  = ∫_(−∞) ^(+∞)     ((2t e^(−3i)  e^(i3t) )/((t^2  +1)^2 ))dt = 2 e^(−3i)   ∫_(−∞) ^(+∞)    ((t e^(3it) )/((t^2  +1)^2 ))dt let  ϕ(z) =((z e^(3iz) )/((z^2  +1)^2 ))  ⇒ ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Re(ϕ,i)....be continued...

3)letI=+cos(3x)(x+1+i)2dxI=+cos(3x)(x+1i)2(x+1+i)2(x+1i)2dx=+cos(3x){x2+2x(1i)+(1i)2){(x+1)2+1}2dx=+cos(3x){x2+2x2xi2i}{(x+1)2+1}2dx=+(x2+2x)cos(3x){(x+1)2+1}2dx+i+(2x2)cos(3x){(x+1)2+1}2dx=H+iKletfindHH=Re(+(x2+2x)ei3x{(x+1)2+1}2dx)cha7gementx+1=tgive+(x2+2x)ei3x{(x+1)2+1}2dx=+{(t1)2+2(t1)}ei3(t1)(t2+1)2=+{t22t+1+2t2}ei3(t1)(t2+1)2dt=e3i+(t21)ei3t(t2+1)2dtletφ(z)=(z21)ei3z(z2+1)2wehaveφ(z)=(z21)e3iz(zi)2(z+i)2thepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi{(zi)2φ(z)}(1)=limzi{(z21)e3iz(z+i)2}(1)=limzi(2ze3iz+3i(z21)e3iz)(z+i)22(z+i)(z2i)e3iz(z+i)4=limzi(2z+3iz23i)e3iz(z+i)2(z2i)e3iz(z+i)3=(2i3i3i)e3(2i)2(1i)e3(2i)3=4i(2i)e3+2(1+i)e38i=(10+2i)e38i=i(5+i)e34e3i+φ(z)dz=e3i{2iπi(5+i)e34}=e3i(π2(5+i))=π2(5+i)(cos(3)isin(3))=π2{5cos(3)5isin(3)+icos(3)+sin(3)}H=Re(...)=π2(5cos(3)+sin(3))letfindkwehaveK=Re(+(2x+2)ei3x{(x+1)2+1}2dx)changementx+1=tgive+(2x+2)ei3x{(x+1)2+1}2dx=+{2(t1)+2}ei3(t1){t2+1}2dt=+2te3iei3t(t2+1)2dt=2e3i+te3it(t2+1)2dtletφ(z)=ze3iz(z2+1)2+φ(z)dz=2iπRe(φ,i)....becontinued...

Commented by math khazana by abdo last updated on 21/Aug/18

H =−(π/2) e^(−3) (5cos(3)+sin(3)) .

H=π2e3(5cos(3)+sin(3)).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com