Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 36173 by prof Abdo imad last updated on 30/May/18

calculate (∂f/∂x) and (∂f/∂y) in this cases  1) f(x,y)= e^(−x)  sin(2y +1)  2)f(x,y) =(x^2  +y^2 )e^(−xy)   3)f(x,y) = (x/(x^2  +y^2 ))

$${calculate}\:\frac{\partial{f}}{\partial{x}}\:{and}\:\frac{\partial{f}}{\partial{y}}\:{in}\:{this}\:{cases} \\ $$$$\left.\mathrm{1}\right)\:{f}\left({x},{y}\right)=\:{e}^{−{x}} \:{sin}\left(\mathrm{2}{y}\:+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){f}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \\ $$$$\left.\mathrm{3}\right){f}\left({x},{y}\right)\:=\:\frac{{x}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 13/Apr/19

1) we have f(x,y) =e^(−x) sin(2y+1) ⇒(∂f/∂x)(x,y) =−e^(−x) sin(2y+1) and  (∂f/∂y)(x,y) =2 e^(−x) cos(2y+1)  2)we have f(x,y) =(x^2  +y^2 )e^(−xy)  ⇒(∂f/∂x)(x,y) =2x e^(−xy)  −y(x^2  +y^2 )e^(−xy)   =(2x−yx^2  −y^3 )e^(−xy)    and  (∂f/∂y)(x,y) = 2y e^(−xy)  −x (x^2  +y^2 )e^(−xy)  =(2y−x^3  −xy^2 )e^(−xy)   3) we have f(x,y) =(x/(x^2  +y^2 )) ⇒(∂f/∂x)(x,y) =((x^2  +y^2 −x(2x))/((x^2  +y^2 )^2 )) =((y^2 −x^2 )/((x^2  +y^2 )^2 ))  and (∂f/∂y)(x,y) =x((−2y)/((x^2  +y^2 )^2 )) =((−2xy)/((x^2  +y^2 )^2 )) .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x},{y}\right)\:={e}^{−{x}} {sin}\left(\mathrm{2}{y}+\mathrm{1}\right)\:\Rightarrow\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:=−{e}^{−{x}} {sin}\left(\mathrm{2}{y}+\mathrm{1}\right)\:{and} \\ $$$$\frac{\partial{f}}{\partial{y}}\left({x},{y}\right)\:=\mathrm{2}\:{e}^{−{x}} {cos}\left(\mathrm{2}{y}+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{f}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \:\Rightarrow\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:=\mathrm{2}{x}\:{e}^{−{xy}} \:−{y}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \\ $$$$=\left(\mathrm{2}{x}−{yx}^{\mathrm{2}} \:−{y}^{\mathrm{3}} \right){e}^{−{xy}} \:\:\:{and} \\ $$$$\frac{\partial{f}}{\partial{y}}\left({x},{y}\right)\:=\:\mathrm{2}{y}\:{e}^{−{xy}} \:−{x}\:\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \:=\left(\mathrm{2}{y}−{x}^{\mathrm{3}} \:−{xy}^{\mathrm{2}} \right){e}^{−{xy}} \\ $$$$\left.\mathrm{3}\right)\:{we}\:{have}\:{f}\left({x},{y}\right)\:=\frac{{x}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\Rightarrow\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:=\frac{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −{x}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${and}\:\frac{\partial{f}}{\partial{y}}\left({x},{y}\right)\:={x}\frac{−\mathrm{2}{y}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{−\mathrm{2}{xy}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com