All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36180 by prof Abdo imad last updated on 30/May/18
calculate∫01ln(t)(1+t)2dt
Commented by prof Abdo imad last updated on 30/May/18
letputI=∫01ln(t)(1+t)2dtletintegratebypartsI=[(1−11+t)ln(t)]01−∫01(1−11+t)dtt=0−∫01dt1+t=−[ln∣1+t∣]01=−ln(2)letprovethatlimt→0(1−11+t)ln(t)=0limt→0(1−11+t)ln(t)=limt→0tln(t)1+t=0becauselimt→0tln(t)=0so★∫01ln(t)(1+t)2dt=−ln(2)★
Answered by sma3l2996 last updated on 30/May/18
I=∫01lnt(1+t)2dtbypartsu=lnt⇒u′=1tv′=1(1+t)2⇒v=−11+tI=[−lnt1+t]01+∫01dtt(1+t)=limt→0+lnt1+t+∫01(1t−11+t)dt=limt→0+lnt1+t+[ln(t1+t)]01=limt→0+(lnt1+t−ln(t))−ln2=−limx→0+tln(t)1+t−ln2=−ln2(becauselimxlnxx→0+=0)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com