Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36180 by prof Abdo imad last updated on 30/May/18

calculate  ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$

Commented by prof Abdo imad last updated on 30/May/18

let put I = ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt  let integrate by parts  I  =[(1−(1/(1+t)))ln(t)]_0 ^1  −∫_0 ^1   (1−(1/(1+t)))(dt/t)  =0 − ∫_0 ^1   (dt/(1+t)) =−[ln∣1+t∣]_0 ^1  =−ln(2)  let prove that lim_(t→0) (1−(1/(1+t)))ln(t)=0  lim_(t→0) (1−(1/(1+t)))ln(t) =lim_(t→0) ((tln(t))/(1+t)) =0  because  lim_(t→0) tln(t) =0 so  ★  ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt =−ln(2)★

$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt}\:\:{let}\:{integrate}\:{by}\:{parts} \\ $$$${I}\:\:=\left[\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right)\frac{{dt}}{{t}} \\ $$$$=\mathrm{0}\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+{t}}\:=−\left[{ln}\mid\mathrm{1}+{t}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:=−{ln}\left(\mathrm{2}\right) \\ $$$${let}\:{prove}\:{that}\:{lim}_{{t}\rightarrow\mathrm{0}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){ln}\left({t}\right)=\mathrm{0} \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){ln}\left({t}\right)\:={lim}_{{t}\rightarrow\mathrm{0}} \frac{{tln}\left({t}\right)}{\mathrm{1}+{t}}\:=\mathrm{0} \\ $$$${because}\:\:{lim}_{{t}\rightarrow\mathrm{0}} {tln}\left({t}\right)\:=\mathrm{0}\:{so} \\ $$$$\bigstar\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt}\:=−{ln}\left(\mathrm{2}\right)\bigstar \\ $$

Answered by sma3l2996 last updated on 30/May/18

I=∫_0 ^1 ((lnt)/((1+t)^2 ))dt  by parts   u=lnt⇒u′=(1/t)  v′=(1/((1+t)^2 ))⇒v=−(1/(1+t))  I=[−((lnt)/(1+t))]_0 ^1 +∫_0 ^1 (dt/(t(1+t)))  =lim_(t→0^+ ) ((lnt)/(1+t))+∫_0 ^1 ((1/t)−(1/(1+t)))dt  =lim_(t→0^+ ) ((lnt)/(1+t))+[ln((t/(1+t)))]_0 ^1   =lim_(t→0^+ ) (((lnt)/(1+t))−ln(t))−ln2  =−lim_(x→0^+ ) ((tln(t))/(1+t))−ln2=−ln2   (because  lim_(x→0^+ ) xlnx=0)

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$${by}\:{parts}\: \\ $$$${u}={lnt}\Rightarrow{u}'=\frac{\mathrm{1}}{{t}} \\ $$$${v}'=\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\Rightarrow{v}=−\frac{\mathrm{1}}{\mathrm{1}+{t}} \\ $$$${I}=\left[−\frac{{lnt}}{\mathrm{1}+{t}}\right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{{t}\left(\mathrm{1}+{t}\right)} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{{lnt}}{\mathrm{1}+{t}}+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{{lnt}}{\mathrm{1}+{t}}+\left[{ln}\left(\frac{{t}}{\mathrm{1}+{t}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\left(\frac{{lnt}}{\mathrm{1}+{t}}−{ln}\left({t}\right)\right)−{ln}\mathrm{2} \\ $$$$=−\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{{tln}\left({t}\right)}{\mathrm{1}+{t}}−{ln}\mathrm{2}=−{ln}\mathrm{2}\:\:\:\left({because}\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}xlnx}=\mathrm{0}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com