Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36185 by prof Abdo imad last updated on 30/May/18

study the vonvergence of   ∫_1 ^(+∞)   ((e^(−(1/t))  −cos((1/t)))/t)dt

$${study}\:{the}\:{vonvergence}\:{of}\: \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\frac{\mathrm{1}}{{t}}} \:−{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}{dt} \\ $$

Commented by maxmathsup by imad last updated on 19/Aug/18

the function is continue at x_0  =1  let see what happen at +∞  channgement  (1/t)=x give  ∫_1 ^(+∞)   ((e^(−(1/t))  −cos((1/t)))/t) dt  = −∫_0 ^1    ((e^(−x)  −cosx)/(1/x))  ((−dx)/x^2 )  =−∫_0 ^1    ((e^(−x)  −cosx)/x) dx = ∫_0 ^1      ((cosx−e^(−x) )/x) dx  but  cosx ∼1−(x^2 /2)  and e^(−x)  ∼ 1−x  (x→0) ⇒cosx −e^(−x)  ∼−(x^2 /2) +x ⇒  ((cosx −e^(−x) )/3)  ∼  −(x/2) +1 →1 when x→0 so  ∫_0 ^1   ((cosx −e^(−x) )/x) dx converges.

$${the}\:{function}\:{is}\:{continue}\:{at}\:{x}_{\mathrm{0}} \:=\mathrm{1}\:\:{let}\:{see}\:{what}\:{happen}\:{at}\:+\infty \\ $$$${channgement}\:\:\frac{\mathrm{1}}{{t}}={x}\:{give} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\frac{\mathrm{1}}{{t}}} \:−{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}\:{dt}\:\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{−{x}} \:−{cosx}}{\frac{\mathrm{1}}{{x}}}\:\:\frac{−{dx}}{{x}^{\mathrm{2}} } \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{−{x}} \:−{cosx}}{{x}}\:{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{cosx}−{e}^{−{x}} }{{x}}\:{dx}\:\:{but} \\ $$$${cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\:{and}\:{e}^{−{x}} \:\sim\:\mathrm{1}−{x}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow{cosx}\:−{e}^{−{x}} \:\sim−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{x}\:\Rightarrow \\ $$$$\frac{{cosx}\:−{e}^{−{x}} }{\mathrm{3}}\:\:\sim\:\:−\frac{{x}}{\mathrm{2}}\:+\mathrm{1}\:\rightarrow\mathrm{1}\:{when}\:{x}\rightarrow\mathrm{0}\:{so}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{cosx}\:−{e}^{−{x}} }{{x}}\:{dx}\:{converges}. \\ $$

Commented by maxmathsup by imad last updated on 19/Aug/18

((cosx −e^(−x) )/2) ∼ 1−(x/2) →1(x→0)...

$$\frac{{cosx}\:−{e}^{−{x}} }{\mathrm{2}}\:\sim\:\mathrm{1}−\frac{{x}}{\mathrm{2}}\:\rightarrow\mathrm{1}\left({x}\rightarrow\mathrm{0}\right)... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com