All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36189 by prof Abdo imad last updated on 30/May/18
letF(x)=∫0∞e−x2tt1+t2dtcalculatelimx→+∞F(x).
Commented by math khazana by abdo last updated on 18/Aug/18
changementt=ugiveF(x)=∫0∞e−x2u2u1+u4(2u)du=2∫0∞u2e−x2u21+u4du=xu=α2∫0∞α2x2e−α21+α4x41xdα=2∫0∞α2e−α2x3+α4xdα=2x∫0∞α2e−α2x4+α4dα⇒F(x)⩽2x3∫0∞α2e−α2dαbut∫0∞α2e−α2dαconverges⇒limx→+∞F(x)=0.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com