Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36189 by prof Abdo imad last updated on 30/May/18

let F(x)=∫_0 ^∞     ((e^(−x^2 t) (√t))/(1+t^2 ))dt  calculate lim_(x→+∞)  F(x) .

letF(x)=0ex2tt1+t2dtcalculatelimx+F(x).

Commented by math khazana by abdo last updated on 18/Aug/18

changement (√t)=u give  F(x) = ∫_0 ^∞    ((e^(−x^2 u^2 )   u)/(1+u^4 )) (2u)du  = 2 ∫_0 ^∞      ((u^2   e^(−x^2 u^2 ) )/(1+u^4 )) du  =_(xu = α)   2 ∫_0 ^∞    (α^2 /x^2 )  (e^(−α^2 ) /(1+(α^4 /x^4 )))  (1/x) dα  =2 ∫_0 ^∞       ((α^2  e^(−α^2 ) )/(x^3  +(α^4 /x)))dα =2x ∫_0 ^∞    ((α^2  e^(−α^2 ) )/(x^4  +α^4 )) dα  ⇒ F(x) ≤(2/x^3 ) ∫_0 ^∞   α^2  e^(−α^2 ) dα  but ∫_0 ^∞   α^2  e^(−α^2 ) dα   converges ⇒ lim_(x→+∞) F(x)=0 .

changementt=ugiveF(x)=0ex2u2u1+u4(2u)du=20u2ex2u21+u4du=xu=α20α2x2eα21+α4x41xdα=20α2eα2x3+α4xdα=2x0α2eα2x4+α4dαF(x)2x30α2eα2dαbut0α2eα2dαconvergeslimx+F(x)=0.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com