Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36190 by prof Abdo imad last updated on 30/May/18

calculate  ∫∫_D (x+y)e^(x+y) dxdy  with  D = {(x,y)∈R^2  / 0<x<2 and  1<y<2 }

calculateD(x+y)ex+ydxdywith D={(x,y)R2/0<x<2and1<y<2}

Commented bymaxmathsup by imad last updated on 20/Aug/18

I =∫_1 ^2   (∫_0 ^2   (x+y)e^(x+y) dx)dy =∫_1 ^2   A(y)dy with A(y)=∫_0 ^2 (x+y)e^(x+y)  dx  A(y) = e^(y )  ∫_0 ^2 (x+y)e^x dx  =e^y   ∫_0 ^2  (xe^x  +y e^x )ex  =e^y {  ∫_0 ^2  xe^x  dx  +y ∫_0 ^2  e^x dx} but  ∫_0 ^2  e^x dx =[e^x ]_0 ^2  =e^2 −1  and by parts   ∫_0 ^2  x e^x dx =[x e^x ]_0 ^2  −∫_0 ^2  e^x dx =2e^2  −e^2  +1 =e^2  +1 ⇒A(y)=e^y (e^2  +1+y(e^2 −1))  =(e^2  +1)e^y  +(e^2 −1)y e^y  ⇒  I = ∫_1 ^2  {  (e^2  +1)e^y  +(e^2  −1)ye^y )dy  =(e^2 +1)∫_1 ^2  e^y dy +(e^2 −1) ∫_1 ^2 y e^y  dy  but  ∫_1 ^2  e^y dy =e^2  −e   and  ∫_1 ^2  y e^y dy =[y e^y ]_1 ^2  −∫_1 ^2  e^y dy  =2e^2  −e −e^2  +e =e^2  ⇒ I =(e^2  +1)(e^2  −e) +(e^2  −1)e^2   I =e^4  −e^3  +e^2  −e +e^4  −e^2  ⇒ I =2e^(4 )  −e^3  .

I=12(02(x+y)ex+ydx)dy=12A(y)dywithA(y)=02(x+y)ex+ydx A(y)=ey02(x+y)exdx=ey02(xex+yex)ex =ey{02xexdx+y02exdx}but 02exdx=[ex]02=e21andbyparts 02xexdx=[xex]0202exdx=2e2e2+1=e2+1A(y)=ey(e2+1+y(e21)) =(e2+1)ey+(e21)yey I=12{(e2+1)ey+(e21)yey)dy =(e2+1)12eydy+(e21)12yeydybut 12eydy=e2eand12yeydy=[yey]1212eydy =2e2ee2+e=e2I=(e2+1)(e2e)+(e21)e2 I=e4e3+e2e+e4e2I=2e4e3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com