Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 36191 by prof Abdo imad last updated on 30/May/18

let D = {(x,y)∈R^2  /x>0 ,y>0,x+y<1}  1) calculate ∫∫_D   ((xy)/(x^2  +y^2 ))dxdy  2) let a>0 ,b>0 calculate ∫∫_D  a^x b^y dxdy

letD={(x,y)R2/x>0,y>0,x+y<1} 1)calculateDxyx2+y2dxdy 2)leta>0,b>0calculateDaxbydxdy

Commented bymaxmathsup by imad last updated on 26/Aug/18

polar coordinates changement x =rcosθ  and y =rsinθ    x>0 and y>0 ⇒ 0<θ<(π/2)  and x+y <1 ⇒ r(cosθ +sinθ)<1 ⇒  0<r<(1/(cosθ +sinθ))  ∫∫_D ((xy)/(x^2  +y^2 ))dxdy  = ∫_0 ^(π/2)   (∫_0 ^(1/(cosθ+sinθ)) ((r^2 cosθsinθ)/r^2 ) rdr)dθ  =∫_0 ^(π/2)   ( ∫_0 ^(1/(cosθ +sinθ)) rdr)cosθ sinθ dθ   but  ∫_0 ^(1/(cosθ +sinθ))  rdr =[(r^2 /2)]_0 ^(1/(cosθ +sinθ))  =(1/(2(cosθ +sinθ)^2 )) =(1/(2(1+2sinθ cosθ))) ⇒  I  = ∫_0 ^(π/2)     ((cosθ sinθ)/(2(1+2sinθ cosθ)))dθ =(1/4) ∫_0 ^(π/2)  ((sin(2θ))/(1+sin(2θ)))dθ  =_(2θ =t)     (1/4) ∫_0 ^π     ((sint)/(1+sint)) (dt/2) =(1/8) ∫_0 ^π   ((1+sint −1)/(1+sint))dt  =(π/8)  −(1/8) ∫_0 ^π     (dt/(1+sint))  chang. tan((t/2)) =u give  ∫_0 ^π     (dt/(1+sint))  = ∫_0 ^∞      (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =2 ∫_0 ^∞    (du/(1+u^2  +2u))  =2 ∫_0 ^∞      (du/((u+1)^2 )) =2[−(1/(u+1))]_0 ^(+∞)  = 2  ⇒ I =(π/8) −(1/4) .

polarcoordinateschangementx=rcosθandy=rsinθ x>0andy>00<θ<π2andx+y<1r(cosθ+sinθ)<1 0<r<1cosθ+sinθ Dxyx2+y2dxdy=0π2(01cosθ+sinθr2cosθsinθr2rdr)dθ =0π2(01cosθ+sinθrdr)cosθsinθdθbut 01cosθ+sinθrdr=[r22]01cosθ+sinθ=12(cosθ+sinθ)2=12(1+2sinθcosθ) I=0π2cosθsinθ2(1+2sinθcosθ)dθ=140π2sin(2θ)1+sin(2θ)dθ =2θ=t140πsint1+sintdt2=180π1+sint11+sintdt =π8180πdt1+sintchang.tan(t2)=ugive 0πdt1+sint=011+2u1+u22du1+u2=20du1+u2+2u =20du(u+1)2=2[1u+1]0+=2I=π814.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com