All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 36191 by prof Abdo imad last updated on 30/May/18
letD={(x,y)∈R2/x>0,y>0,x+y<1} 1)calculate∫∫Dxyx2+y2dxdy 2)leta>0,b>0calculate∫∫Daxbydxdy
Commented bymaxmathsup by imad last updated on 26/Aug/18
polarcoordinateschangementx=rcosθandy=rsinθ x>0andy>0⇒0<θ<π2andx+y<1⇒r(cosθ+sinθ)<1⇒ 0<r<1cosθ+sinθ ∫∫Dxyx2+y2dxdy=∫0π2(∫01cosθ+sinθr2cosθsinθr2rdr)dθ =∫0π2(∫01cosθ+sinθrdr)cosθsinθdθbut ∫01cosθ+sinθrdr=[r22]01cosθ+sinθ=12(cosθ+sinθ)2=12(1+2sinθcosθ)⇒ I=∫0π2cosθsinθ2(1+2sinθcosθ)dθ=14∫0π2sin(2θ)1+sin(2θ)dθ =2θ=t14∫0πsint1+sintdt2=18∫0π1+sint−11+sintdt =π8−18∫0πdt1+sintchang.tan(t2)=ugive ∫0πdt1+sint=∫0∞11+2u1+u22du1+u2=2∫0∞du1+u2+2u =2∫0∞du(u+1)2=2[−1u+1]0+∞=2⇒I=π8−14.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com