Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36193 by prof Abdo imad last updated on 30/May/18

let D ={(x,y)∈ R^2  / x^2  +y^2  −x<0 and  x^2  +y^2  −y >0 and y>0}  calculate∫∫_D   (x+y)^2 dxdy

$${let}\:{D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−{x}<\mathrm{0}\:{and}\right. \\ $$ $$\left.{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−{y}\:>\mathrm{0}\:{and}\:{y}>\mathrm{0}\right\} \\ $$ $${calculate}\int\int_{{D}} \:\:\left({x}+{y}\right)^{\mathrm{2}} {dxdy} \\ $$

Commented bymaxmathsup by imad last updated on 15/Aug/18

changement  x=r cosθ  and y =r sinθ  give  x^2  +y^2 −x <0 ⇒r^2  −rcosθ <0 ⇒r<cosθ  x^2  +y^2 −y>0 ⇒r^2 −r sinθ >0 ⇒sinθ<r ⇒ sinθ<r<cosθ  ∫∫_D (x+y)^2 dxdy = ∫∫_D (x^2 +y^2  +2xy)dxdy  = ∫_0 ^(2π)  (∫_(sinθ) ^(cosθ)  (r^2  +2r^2 cosθ sinθ)rdr)dθ  =∫_0 ^(2π)  ( ∫_(sinθ) ^(cosθ) r^3 dr  +∫_(sinθ) ^(cosθ)  2r^3 sinθ coθ dr)dθ  =(1/4)∫_0 ^(2π)  (cos^4 θ−sin^4 θ)dθ   +(1/2) ∫_0 ^(2π) sinθ cosθ(cos^4 θ −sin^4 θ)dθ  =(1/4) ∫_0 ^(2π)  cos(2θ)dθ  + (1/4) ∫_0 ^(2π) sinθ cosθ(cos^2 θ −sin^2 θ)dθ  =0 +(1/4) ∫_0 ^(2π) sinθ cos^3 θdθ −(1/4) ∫_0 ^(2π)  cosθ sin^3 θ  =−(1/(16)) [cos^4 θ]_0 ^(2π)   −(1/(16))[sin^4 θ]_0 ^(2π)  =0 ⇒ I =0

$${changement}\:\:{x}={r}\:{cos}\theta\:\:{and}\:{y}\:={r}\:{sin}\theta\:\:{give} \\ $$ $${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −{x}\:<\mathrm{0}\:\Rightarrow{r}^{\mathrm{2}} \:−{rcos}\theta\:<\mathrm{0}\:\Rightarrow{r}<{cos}\theta \\ $$ $${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −{y}>\mathrm{0}\:\Rightarrow{r}^{\mathrm{2}} −{r}\:{sin}\theta\:>\mathrm{0}\:\Rightarrow{sin}\theta<{r}\:\Rightarrow\:{sin}\theta<{r}<{cos}\theta \\ $$ $$\int\int_{{D}} \left({x}+{y}\right)^{\mathrm{2}} {dxdy}\:=\:\int\int_{{D}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:+\mathrm{2}{xy}\right){dxdy} \\ $$ $$=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\left(\int_{{sin}\theta} ^{{cos}\theta} \:\left({r}^{\mathrm{2}} \:+\mathrm{2}{r}^{\mathrm{2}} {cos}\theta\:{sin}\theta\right){rdr}\right){d}\theta \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\left(\:\int_{{sin}\theta} ^{{cos}\theta} {r}^{\mathrm{3}} {dr}\:\:+\int_{{sin}\theta} ^{{cos}\theta} \:\mathrm{2}{r}^{\mathrm{3}} {sin}\theta\:{co}\theta\:{dr}\right){d}\theta \\ $$ $$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\left({cos}^{\mathrm{4}} \theta−{sin}^{\mathrm{4}} \theta\right){d}\theta\:\:\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\theta\:{cos}\theta\left({cos}^{\mathrm{4}} \theta\:−{sin}^{\mathrm{4}} \theta\right){d}\theta \\ $$ $$=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{cos}\left(\mathrm{2}\theta\right){d}\theta\:\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\theta\:{cos}\theta\left({cos}^{\mathrm{2}} \theta\:−{sin}^{\mathrm{2}} \theta\right){d}\theta \\ $$ $$=\mathrm{0}\:+\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\theta\:{cos}^{\mathrm{3}} \theta{d}\theta\:−\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{cos}\theta\:{sin}^{\mathrm{3}} \theta \\ $$ $$=−\frac{\mathrm{1}}{\mathrm{16}}\:\left[{cos}^{\mathrm{4}} \theta\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:−\frac{\mathrm{1}}{\mathrm{16}}\left[{sin}^{\mathrm{4}} \theta\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:=\mathrm{0}\:\Rightarrow\:{I}\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com